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Abstract 
 

Purpose 

Formative measurement, where indicators are frequently seen as causing their corresponding 

latent variables, is extensively used in information systems research; and in such a way as to 

attract methodological criticism to the entire field. We attempt to ameliorate this situation. 

Design/methodology/approach 

Anchored on a new measurement residual theory, we argue that a latent variable always exists 

before the corresponding indicators when data is collected via questionnaires, whether reflective 

or formative measurement is used. Consequently, we posit that the direction of causality going 

from indicators to latent variables normally associated with formative measurement is misguided.  

Findings 

We develop a theory-driven set of recommendations for the assessment of formative measurement 

quality, addressing the following elements: factor reliability, indicator redundancy, significance 

of indicator weights, indicator effect sizes, Simpsons’ paradox instances associated with 

indicators, model-wide factor redundancy, and use of analytic composites. 

Research limitations/implications 

The new theory and related recommendations are illustrated based on an empirical study of 290 

geographically distributed product innovation teams that used various electronic communication 

media to conduct their work.  

Originality/value 

The data is analyzed with the software WarpPLS, a widely used structural equation modeling tool 

that allows for formative measurement assessment and analytic composite utilization, in ways that 

are fully compatible with the theory-driven set of recommendations presented in this paper. 

 

 

Keywords: Measurement Residual Theory; Common Factor Model; Measurement Error Theory; 

Structural Equation Modeling; Latent Variable; Analytic Composite 
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1. Introduction 

Questionnaires are developed by researchers to indirectly measure unobservable 

variables, frequently called latent variables, which are mental ideas – e.g., job satisfaction and e-

communication media use. These latent variables, also referred to as constructs and latent 

constructs, are assumed to be quantified through factors. Question-statements typically answered 

on Likert-type scales produce indirect measures of the mental ideas when answered. These 

indirect measures are known as indicators, and are believed to individually measure latent 

variables with some degree of imprecision. 

There are two main types of latent variable measurement: reflective and formative 

(Bollen, 2011; Cenfetelli & Bassellier, 2009; Cheah et al., 2019; Coltman et al., 2008; Fleuren et 

al., 2018; Hanafiah, 2020; Kono et al., 2021; Mikulić & Ryan, 2018; Theodosiou et al., 2019; 

Peštović et al., 2021). Reflective measurement relies on redundant question-statements, while 

formative measurement involves the use of non-redundant question-statements. Let us say that a 

researcher wants to measure the use of e-communication media by individuals in organizations. 

Question-statements of the type “I use e-communication media” and “using e-communication 

media is important to me” would be used in reflective measurement. Question-statements of the 

type “I use email” and “I use video conferencing” would be used in formative measurement. 

As we can see above, in formative measurement the question-statements are non-

redundant, but they are generated based on one mental construct – use of e-communication 

media. In the example above, the question-statements are not redundant because heavy email 

users may not be heavy video conferencing users, and vice-versa. Without the mental, or latent, 

construct (i.e., e-communication media use), it would not be possible to generate meaningful 
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question-statements. Meaningless question-statements, like “I use or do not use whatever”, 

would be of little use for measurement. 

In spite of this, there is a general belief among scholars that, with formative 

measurement, indicators cause their corresponding latent variables. This idea, which is discussed 

in more detail in this paper, is clearly illogical, because it requires the existence of the indicators 

prior to the latent variables that they are designed to measure – and those latent variables are 

essentially the mental ideas needed to generate meaningful question-statements. The solution to 

this conundrum requires, in our view, a reconceptualization of formative measurement, which we 

propose in this paper, along with a set of guidelines on how to assess the quality of such 

measurement. 

 

2. Research background and goal 

In formative measurement the indicators are often thought of as causes of the latent 

variables, and by extension of the associated factors (Hardin, 2017; Ho et al., 2022; Giovanis et 

al., 2018; Hardin et al., 2011; Hsu et al., 2018). But how indicators based on question-statements 

developed to indirectly measure latent variables can possibly cause those variables? After all, the 

mental ideas associated with the latent variables must exist before the question-statements are 

developed. 

In part due to complications associated with this paradoxical situation, formative 

measurement has been heavily criticized in the past. For example, Hardin & Marcoulides (2011) 

call for suspending the use of formative measurement. Edwards (2011) goes one step further, and 

calls for a complete abandonment of formative measurement. Howell et al. (2013), too, put forth 

an equally critical perspective (see, also: Howell et al., 2007a; 2007b). Our view, explained in 
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this paper, is that formative measurement can indeed be used, as long as it is properly 

conceptualized and certain precautions are taken. 

Formative measurement is used in information systems research in such an extensive way 

as to attract criticism to the entire field. Hardin & Marcoulides (2011, p. 753), in their call for 

suspending the use of formative measurement, noted that a “flurry of articles on formative 

measurement, particularly in the information systems literature, appears to be symptomatic of a 

much larger problem. Despite significant objections by methodological experts, these articles 

continue to deliver a predominately pro formative measurement message to researchers who 

rapidly incorporate these recommendations into their research”. 

The heavy use of formative measurement in the field of information systems may have 

been motivated by the popularity of partial least squares algorithms (Diamantopoulos, 2011; Kim 

et al., 2010; Kock, 2019; 2023; Petter, 2018; Petter et al., 2007), particularly the algorithm 

variation known as Mode B, also called the “formative mode” (Lohmöller, 1989). Even though it 

is widely used, the problematic nature of Mode B, leading to interpretational difficulties such as 

Simpson’s paradox instances (Kock, 2014; 2021b; Pearl, 2009), has been clearly demonstrated in 

the past; with compelling demonstrations having been provided by information systems 

researchers (Aguirre-Urreta & Marakas, 2013; Kock & Mayfield, 2015). 

The above scenario creates difficulties for the use and assessment of formative 

measurement, and consequently a significant gap in the methodological literature. Hence, our 

goal in this paper is to fill this gap though a reconceptualization of formative measurement, 

which requires the development of a new theory of indirect measurement of latent variables with 

error via indicators, and the development of a set of guidelines on how to assess the quality of 

such measurement that is directly derived from this new theoretical framework. 
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We argue in this paper, anchored on a new measurement residual theory, referenced 

through the acronym MRT, that the indicators-to-factor causal links direction normally 

associated with formative measurement is misguided. Moreover, we propose a set of 

recommendations for the assessment of formative measurement quality, addressing the following 

elements: factor reliability (Canatay et al., 2022; Kock, 2023), indicator redundancy (Kock, 

2014; Kock & Moqbel, 2021; Petter et al., 2007), significance of indicator weights (Amora, 

2023; Kock, 2014; Petter et al., 2007), indicator effect sizes (Amora, 2023; Kock, 2014), 

Simpsons’ paradox instances associated with indicators (Amora, 2023; Kock, 2014; 2021b; 

Pearl, 2009), model-wide factor redundancy (Bayonne et al., 2020; Kock & Lynn, 2012), and use 

of analytic composites (Bag et al., 2022; Kock, 2021a). Some of these recommendations are 

novel and add important elements to existing formative measurement assessment criteria; e.g., 

when Simpsons’ paradox occurs at the indicator level, the indicator in question makes a negative 

individual contribution to the variance explained in the factor (Kock, 2022; Kock & Gaskins, 

2016; Pearl, 2009). 

For simplicity, and without any impact on the generality of our discussion, all of the 

variables we use in our argumentation are assumed to be standardized. That is, unless stated 

otherwise, the variables are assumed to be scaled to have a mean of zero and standard deviation 

of one. Moreover, the parameters to which we refer (e.g., regressions weights) are also assumed 

to be standardized parameters, unless stated otherwise. Finally, to simplify our discussion at 

some points, and avoid long-winded sentences, we use certain terms that refer to closely related 

entities interchangeably. Examples are the terms latent variable and factor, and the terms 

question-statement and indicator. 
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3. Measurement residual theory 

In this section, and component sub-sections, we lay out a new “summative” 

conceptualization of measurement residuals and related theoretical elements. This new theory, to 

which we refer by employing the acronym MRT, standing for measurement residual theory, 

incorporates key elements from two well established theoretical frameworks. These frameworks 

are classic measurement error theory (Nunnaly, 1978; Nunnally & Bernstein, 1994) and the 

common factor model (Kline, 2010; MacCallum & Tucker, 1991). MRT refers primarily to 

measurement error arising from the use of questionnaires, leading to measurement residuals that 

differentiate factors from composites (Kock, 2015b; 2019). 

We believe that MRT makes a notable contribution to the literature by clarifying key 

issues that underlie structural equation modeling with both formative and reflective latent 

variables, through the novel integration of classic measurement error theory and the common 

factor model. We also believe that MRT makes another important contribution to the literature 

by providing an integrated theory that serves as a basis on which one can build recommendations 

for the assessment of formative measurement quality, as we do. We hope it will be clear in this 

paper that, without MRT, our recommendations would not flow in a very logical and theory-

driven fashion. In this sense, MRT provides a guiding framework that we hope will be useful in 

future methodological discussion by other researchers. 

 

3.1. A factor always causes its indicators 

Let us say that a researcher wants to measure job satisfaction, so that a study can be 

conducted to investigate whether one’s job satisfaction influences job performance at an 

organization. In this example, job satisfaction is an idea that exists in the mind of the researcher 
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before any question or question-statement is devised to measure the construct. The researcher 

may devise the following question-statements, to be answered on a Likert-type scale with 7 

points (e.g., 1 = very strongly disagree, 2 = strongly disagree … 7 = very strong agree) to 

measure job satisfaction: “I like my job”, and “My job is great”. The sets of scores obtained 

based on these two question-statements across multiple individuals are referred to as indicators 

of the job satisfaction construct. 

In the example above, a factor is a set of scores that is assumed to measure the mental 

idea of job satisfaction, a construct that is not directly observable. The indicators are not 

available to the researcher prior to an empirical study, where a questionnaire is administered to 

study participants. The question-statements above are expected to measure one single dimension 

of job satisfaction, which is why the question-statements appear to be redundant (i.e., ask the 

same “thing” using different words). As such, the corresponding indicators are said to be 

associated with the factor in a reflective way (Amora, 2023; Kock, 2014; Mohammad Salameh et 

al., 2018). This is a simplified example for illustration purposes; usually more than two question-

statements would be used. 

The researcher may instead use the following question-statements to measure the job 

satisfaction construct: “I like my boss”, and “I like my office”. These question-statements are 

different in that they can reasonably be expected to measure two different dimensions of job 

satisfaction, namely satisfaction with one’s boss and with one’s office. As such, they are said to 

measure the job satisfaction construct, or to be associated with the corresponding factor, in a 

formative way (Ambalov, 2021; Kock, 2014; Mamakou et al., 2024). 

In either case, reflective or formative, the job satisfaction idea must exist in the mind of 

the researcher before the question-statements are devised (see Figure 1). Therefore, in both cases 
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the factor, which is assumed to measure the corresponding construct, comes first from a temporal 

perspective. In other words, one could say that the factor always causes the indicators, whether 

measurement is reflective or formative, since the factor is an unobserved measure of the latent 

construct. 

 

 
Figure 1. Latent constructs exist before their indicators 

 

 

Another construct, which was used earlier in this paper and would be particularly relevant 

in the field of information systems, is the use of e-communication media by individuals in 

organizations; incidentally, this construct has been shown to be related to both job satisfaction 

and job performance (see, e.g., Kock & Moqbel, 2021). Question-statements of the type “I use e-

communication media” and “using e-communication media is important to me” would be used in 

reflective measurement. Question-statements of the type “I use email” and “I use video 

conferencing” would be used in formative measurement. 
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3.2. The measurement residual of a factor 

Unlike classic measurement error theory and the common factor model, MRT 

conceptualizes the measurement residual associated with a factor as akin to a “unique indicator” 

that accounts for the variance in the factor that is not explained by the indicators associated with 

the factor. This measurement residual should not be confused with the indicator errors, which are 

key elements of the common factor model. Figure 2 illustrates these several conceptual entities 

and corresponding relationships hypothesized by MRT. 

 

 
Figure 2. Indicator errors and measurement residual of a factor 

Notes: arrows used in a schematic way, to indicate whether indicators are regressed on their factor (left), or vice-

versa (right); true causality is always from factor to indicators when questionnaires are used. 

 

 

The arrows are used here in a schematic way, to indicate whether indicators are regressed 

on their factor, or vice-versa, to obtain loadings and weights respectively. As noted earlier, true 

causality always goes from factor to indicators when questionnaires are used for data collection 

and subsequent analysis. 

In this figure 𝑥𝑖1, 𝑥𝑖2 … 𝑥𝑖𝑛𝑖 are the 𝑛𝑖 indicators of a factor 𝐹𝑖; and 𝜆𝑖1, 𝜆𝑖2 … 𝜆𝑖𝑛𝑖 the 

corresponding standardized loadings, which are the correlations among the factor and each of the 
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indicators. The assumed individual imprecision of each of the indicators implies individual 

loadings lower than 1, and the resulting existence of indicator errors 𝜃𝑖1, 𝜃𝑖2 ... 𝜃𝑖𝑛𝑖. In MRT the 

partial regression weights 𝜔𝑖1, 𝜔𝑖2 … 𝜔𝑖𝑛𝑖
 are hypothesized to arise when the factor is regressed 

on its indicators, in a least squares sense. The factor’s measurement residual 𝜀𝑖 is hypothesized in 

MRT to arise as an element that accounts for the variation in the factor that is not accounted for 

by the indicators. 

All of the entities above are assumed in MRT to be stored in column vectors, and to exist 

at the population level. In this sense, the entities above are assumed to be the true entities that 

satisfy the stated assumptions underlying MRT. This applies to both, left and right, parts of the 

figure. For example, the weights  𝜔𝑖1, 𝜔𝑖2 … 𝜔𝑖𝑛𝑖
 in the figure are the true weights. The 

population is assumed to have a finite size 𝑁𝑝, which can be quite large, e.g., the entire human 

population; or small, e.g., 50 individuals who work at a small organization with unique 

characteristics. When a sample that is smaller than the population is randomly drawn from it, it 

will have a size 𝑁. Samples generated by empirical studies are assumed to replicate this random 

sampling process. 

 

3.3. The true composite associated with a factor 

Composites, unlike factors, are exact linear combinations of indicators that do not 

incorporate the variation found in the corresponding factors’ measurement residuals. As such, 

composites can be seen as approximations of factors, whether measurement is reflective or 

formative. There are many ways in which composites used to approximate factors can be 

created; e.g., by using identical weights or weights generated by classic partial least squares 
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algorithms (Adelman & Lohmoller, 1994; Kline, 2010; Kock, 2019; 2023; Lohmöller, 1989; 

McIntosh et al., 2014). 

In MRT, however, only one unique composite is hypothesized to arise from the weighted 

aggregation of the indicators using the true weights  𝜔𝑖1, 𝜔𝑖2 … 𝜔𝑖𝑛𝑖
. This is referred to as the 

true composite 𝐶𝑖. This entity’s relationship with its corresponding factor 𝐹𝑖 is indicated in Eq. 1, 

where 𝑥𝑖 is a matrix storing the indicators associated with factor 𝐹𝑖, 𝜔𝑖 is a column vector storing 

indicator weights, and 𝜔𝑖𝐶 is the composite weight. 

 

𝐹𝑖 = ∑ 𝑥𝑖𝑗𝜔𝑖𝑗
𝑛𝑖
𝑗=1 + 𝜀𝑖𝜔𝑖𝜀 →  

𝐹𝑖 = 𝑥𝑖𝜔𝑖 + 𝜀𝑖𝜔𝑖𝜀 →  

𝐹𝑖 = 𝐶𝑖𝜔𝑖𝐶 + 𝜀𝑖𝜔𝑖𝜀. (Eq. 1) 

 

In Appendix A we demonstrate that the true composite weights must satisfy Eq. 2, where: 

𝛴𝑥𝑖𝑥𝑖 is the covariance matrix of the indicators; 𝛴𝑥𝑖𝜃𝑖 is the matrix of covariances among 

indicators and their errors; the function 𝑑𝑖𝑎𝑔(∙) returns a matrix with only its diagonal elements 

different from zero; the superscript ′ denotes the transpose operation; the superscript −1 denotes 

the classic matrix inversion; and the superscript + denotes the Moore–Penrose pseudoinverse 

transformation. We should point out that the weights stored in 𝜔𝑖 are not, to our knowledge, 

estimated by any of the widely used algorithms currently employed to estimate composites; this 

includes classic partial least squares algorithms (see, e.g., Lohmöller, 1989). 

 

𝜔𝑖 = 𝛴𝑥𝑖𝑥𝑖
−1 (𝛴𝑥𝑖𝑥𝑖 − 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖)) 𝜆𝑖

′+. (Eq. 2) 

 

Since each measurement residual 𝜀𝑖 is uncorrelated with the indicators stored in 𝑥𝑖, we 

can follow a simple stochastic set of steps to produce the estimates of the true weights (𝜔̂𝑖) using 

Eq. 2. With these weight estimates and the indicators stored in 𝑥𝑖 we can then directly obtain 

estimates of the true composites. The stochastic set of steps is as follows. Step 1: Initialize 𝜀𝑖̂ 
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with random values; a stochastic step. Step 2: Produce estimates of the loadings (𝜆̂𝑖) and 

reliability (𝜌̂𝑖) using previously validated approaches such maximum likelihood confirmatory 

factor analysis (Kline, 2010; Mueller, 1996), or the consistent partial least squares technique 

(Dijkstra & Schermelleh-Engel, 2014). Step 3: Calculate 𝜔̂𝑖𝐶 and 𝜔̂𝑖𝜀 based on the reliability 

estimate 𝜌̂𝑖. Step 4: Initialize 𝜔̂𝑖 with unit values. Step 5: Perform iterations using Eq. 2 until the 

weights in 𝜔̂𝑖 change by less than a small fraction. Kock (2015b) provides an illustration and 

validation of a variation of this set of steps. 

 

3.4. The true reliability associated with a factor and correlation 

attenuation 

Since the measurement residual is assumed to be uncorrelated with the indicators of a 

factor in MRT, it is by definition uncorrelated with the true composite. Therefore, we can 

conclude based on classic measurement error theory that the true reliability associated with each 

factor 𝐹𝑖 is the amount of variance explained by the true composite. It should be noted that this is 

the same as the amount of variance explained by the indicators. In MRT we refer to this true 

reliability as 𝜌𝑖. It thus follows that the weights associated with the true composite and 

measurement residual can be obtained directly from the true reliability: 

 

𝜔𝑖𝐶 = √𝜌𝑖,  

𝜔𝑖𝜀 = √1 − 𝜌𝑖.  

 

Classic measurement error theory states that, in the presence of measurement error, the 

correlation between any pair of composites 𝛴𝐶𝑖𝐶𝑗 has a lower absolute magnitude than the 

correlation between the corresponding factors 𝛴𝐹𝑖𝐹𝑗  (Nunnaly, 1978; Nunnally & Bernstein, 
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1994). The correlation between any pair of composites equals the correlation between the 

corresponding factors multiplied by the geometric mean of the factors’ true reliabilities: 

 

𝛴𝐶𝑖𝐶𝑗 = 𝛴𝐹𝑖𝐹𝑗√𝜌𝑖𝜌𝑗 . (Eq. 3) 

 

It should be noted that Eq. 3 only holds if the true values of the correlations between 

factors, the correlations between the true composites, and the true reliabilities are used. Fairly 

accurate estimates of the true reliabilities can be obtained via maximum likelihood confirmatory 

factor analysis (Kline, 2010; Mueller, 1996), and the consistent partial least squares technique 

(Dijkstra & Schermelleh-Engel, 2014). With those, and the equations discussed in MRT for the 

estimation of the true composite scores, one can obtain via Eq. 3 the true correlations among 

factors. Many other entities and parameters can be subsequently estimated; including the factors 

themselves, via the Thurstone and Bartlett methods (DiStefano et al., 2009; Bartlett, 1937; 

Thurstone, 1935), as well as the new variation sharing method (Kock, 2017; Kock & Sexton, 

2017). It should be noted that the factor estimates generated via the Thurstone and Bartlett 

methods have been found recently to be rather imprecise (Kock, 2019). 

In MRT a measurement residual always exists in connection with a factor, whether 

measurement is formative or reflective. This follows the conventional view of formative 

measurement, of which seminal discussions are provided by Bollen & Lennox (1991) and 

Diamantopoulos (2011). In it, formative measurement assumes the existence of a residual, which 

is not present in composites. In MRT factors are not modeled as composites; they are weighted 

aggregations of their indicators and measurement residual. In this context, the true reliability is 

the percentage of the variance in the factor that is explained by the indicators. This applies to 

both reflective and formative measurement, and it goes generally against the composite-based 
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orientation underlying classic partial least squares techniques (Lohmöller, 1989). In MRT the 

true composite and factor are closely connected but distinct entities. 

 

4. Analytic composites 

Many indices are used in business and societal contexts that are aggregations of other 

measures, and that do not explicitly incorporate measurement error. From a mathematical 

statistics standpoint, these are composites. Examples are the Standard & Poor's 500 and the Dow 

Jones Industrial Average, which are stock market indices; and the Gini coefficient, a country 

wealth distribution index. To avoid confusion with the term index as it is used in structural 

equation modeling, normally referring to a measure of fit (Kline, 2010; Mueller, 1996), we will 

refer to these as analytic composites. 

One common characteristic of analytic composites is that they are designed to serve a 

purpose. For example, the Standard & Poor's 500 has been designed to provide a key piece of 

information to the public, namely whether the U.S. stock market as a whole is “going up or 

down” in terms of company valuations. The weights of the indicators used in the Standard & 

Poor's 500 are based on the market capitalizations of 500 large companies listed on two major 

stock exchanges, the NYSE and NASDAQ. Unlike the weights associated with true composites 

and factors in our formulation of MRT, which are estimated through mathematical equations 

based on the indicators, the weights in analytic composites such as the Standard & Poor's 500 are 

set by the designers of the analytic composites. 

A researcher can use indicators taken from a questionnaire to build an analytic composite 

with pre-specified indicator weights. For example, let us assume that an analytic composite 𝐴1 is 

to be built with indicators 𝑥11, 𝑥12 and 𝑥13 from a questionnaire. The weights to be used are 
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respectively: .665, .333, and .166. Note that the first weight is approximately twice the second, 

which is twice the third. The composite would thus be calculated as indicated in Eq. 4. Appendix 

B shows how an analytic composite can be built in practice, in the context of a structural 

equation modeling analysis. 

 

𝐴1 = 𝑥11(. 665) + 𝑥12(. 333) + 𝑥13(. 166). (Eq. 4) 

 

For this type of design to be useful in the context of a research study, the researcher must 

have good reasons to build the analytic composite in a particular way; i.e., using pre-specified 

indicators and corresponding weights. Within the scope of our discussion on formative 

measurement, analytic composites can be useful as aggregators of indicators that do not pass 

quality assessment criteria; e.g., indicators whose factor weights are individually too small to be 

considered statistically different from zero. One such analytic composite is indicated as 𝐴𝑖 in Eq. 

5. 

 

𝐹𝑖 = ∑ 𝑥𝑖𝑗𝜔𝑖𝑗
10
𝑗=1 + 𝜀𝑖𝜔𝑖𝜀 →  

𝐹𝑖 = ∑ 𝑥𝑖𝑗𝜔𝑖𝑗
5
𝑗=1 + ∑ 𝑥𝑖𝑗𝜔𝑖𝑗

10
𝑗=6 + 𝜀𝑖𝜔𝑖𝜀 →  

𝐹𝑖 = ∑ 𝑥𝑖𝑗𝜔̇𝑖𝑗
5
𝑗=1 + 𝐴𝑖𝜔𝑖𝐴 + 𝜀𝑖𝜔̇𝑖𝜀. (Eq. 5) 

 

Here we assume that a factor 𝐹𝑖 refers to formative measurement and aggregates 10 

indicators, of which only the first 5 have weights that are individually strong enough to be 

statistically significant – or assumed to be nonzero weights from a statistical standpoint. The 

other 5 indicators have weights that are individually too weak, but that when aggregated into the 

composite 𝐴𝑖 based on their original weights lead to a composite weight 𝜔𝑖𝐴 that is statistically 

significantly. This happens while the other 5 indicators retain significant weights, even though 

those weights change (from 𝜔𝑖𝑗 to 𝜔̇𝑖𝑗). This analytic composite could be seen as analogous to 

an instrumental variable (Arellano & Bover, 1995; Kline, 2010) that implements an instance of 
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second-order measurement. Nevertheless, it should be clear that it does not interfere with the 

incorporation of measurement error into the factor. 

As it will be seen later, such an auxiliary analytic composite can help us realize formative 

measurement that passes a comprehensive set of measurement quality criteria, proposed by us 

consistently with MRT. The main underlying reason why this type of analytic composite would 

be used in formative measurement is that it may incorporate variation that can be useful in that 

measurement, and that would otherwise be lost in a structural equation modeling analysis. 

Without that variation, a formative factor may end up with too much of its variance being 

explained by its corresponding measurement residual, which would likely lead to a downward 

bias in path coefficients for links causally connecting the factor with other factors (Kline, 2010; 

Kock, 2019). 

Pseudo-reliability estimates can be produced for an analytic composite through the 

classic equations defining the Cronbach’s alpha (see, e.g.: Nunnaly,1978; Nunnally & Bernstein, 

1994) and the composite reliability (see, e.g.: Dillon & Goldstein, 1984; Peterson & Yeolib, 

2013). These pseudo-reliability estimates should not be confused with the true factor reliability, 

which is the amount of variance explained by the indicators associated with the factor. Strictly 

speaking, all composites have a reliability of 1, because 100 percent of their variance is 

explained by their component indicators. 

 

5. Formative or reflective? Semantic assessment and the 

loadings rule 

While in formative measurement the researcher normally expects different indicators to 

measure diverse dimensions of the same latent variable, this may not be the case if the 
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questionnaire respondents do not construe the question-statements in the same way as the 

researcher who designed the question-statements did. For example, let us assume that a latent 

variable associated with the use of project management techniques by teams is measured through 

the following question-statements: “There were adequate mechanisms to track the project's 

progress”, and “There were adequate mechanisms to track the project's costs”. It is possible that 

a researcher would see these questions as measuring different dimensions of a latent variable, 

whereas the questionnaire respondents could subconsciously view them as redundantly 

measuring the same construct, or vice-versa. Another possibility is that the mechanisms available 

for tracking a project’s progress and costs are always used by teams together, even as the degrees 

to which they are used vary across teams, leading the indicators to be redundant. 

Given the above possibilities, we argue that the decision as to whether to consider a 

measurement approach as formative or reflective, for measurement quality assessment purposes, 

can be made only after data is collected and analyzed, with the results being compatible with 

theoretical assumptions made by the researcher at the questionnaire design stage. This latter 

requirement, which refers to the questionnaire design stage, often can be tested via 

commonsense, and can be illustrated through an example. An indicator associated with the 

question-statement “I like my spouse” cannot, under most circumstances, be theoretically 

associated with the mental idea of the market success of a new product developed by a team at an 

organization. Below we propose a more structured approach to address this type of problem, 

through a semantic assessment check. We follow that with the proposal of a general decision rule 

building on indicator loadings. 
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5.1. Semantic assessment 

Formative and reflective measurement are often confused (Bollen & Lennox, 1991; Hsu 

et al., 2018). A semantic assessment check, focused on the meaning of the question-statements 

used for data collection (Bollen, 2011; Diamantopoulos, 2011), is of critical importance to avoid 

a situation that appears to be all too common (Cenfetelli & Bassellier, 2009; Petter et al., 2007), 

where poorly designed reflective measurement is confused with formative measurement. This 

goes beyond the commonsense validations mentioned above. For this, the unit of analysis for 

data collection regarding each latent construct must be clearly defined (Kock & Lynn, 2012). 

Indicators measure latent constructs with respect to a given unit of analysis, which we view as 

providing an important semantic “anchor” for the latent construct to be quantified. Let us 

consider the indicator associated with the question-statement “There were adequate mechanisms 

to track the project's progress”. The unit of analysis here is the project, because what is being 

measured is an attribute of a given project – namely the degree to which adequate mechanisms 

were being used to track its progress. Note that even though the data may be collected at the 

individual level (e.g., from project team leaders), the unit of analysis in this example is still the 

project carried out by the team. 

Once the unit of analysis is clearly established for a particular latent construct, a semantic 

assessment can be conducted by ensuring that all question-statements associated with the same 

latent construct refer to the same unit of analysis. In this sense, the following question-statements 

would pass this semantic assessment check, because they both refer to the same unit of analysis 

(i.e., the project): “There were adequate mechanisms to track the project's progress” and “There 

were adequate mechanisms to track the project's costs”. However, this question-statement would 

fail the semantic assessment check: “There were adequate mechanisms to track the success of the 
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firm where the project was conducted”. The reason is that this question-statement refers to a 

different unit of analysis, namely the firm where the project was carried out. Indicators 

associated with question-statements that fail this semantic assessment check should be either 

removed from the analysis or re-assigned to another latent construct (Kock & Lynn, 2012), if 

they pass the check with respect to that other construct. 

 

5.2. The loadings rule 

Because we anticipate that, in formative measurement, indicators will measure different 

dimensions of the same latent variable, and thus will not be redundant among themselves, we 

would expect formative latent variables to fail to conform to the classic convergent validity 

expectation that loadings be equal to or greater than .5 (Kline, 2010; Kock & Lynn, 2012). This 

expectation assumes that all the indicators associated with a given latent construct pass a 

semantic assessment check, as discussed above. Those indicators that fail the check should first 

be removed from the analysis or re-assigned to another latent construct. After this, loadings 

should be re-calculated. 

After the above is conducted, and consistently with the classic convergent validity 

expectation discussed above, it is our view that latent variables for which all indicators have 

loadings equal to or greater than .5 should be treated as reflective, and subject to classic validity 

and reliability measurement assessment criteria applied to reflective latent variables (Kline, 

2010; Kock & Lynn, 2012). If that is not the case, then they should be treated as formative and 

subject to the recommendations proposed below. We refer to this as the loadings rule for the 

decision to employ formative or reflective treatment of latent variables, with respect to the 

assessment of their measurement quality. 
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At this point, an expert reader may correctly argue that the loadings can also be lower 

than .5 for reasons such as response error (e.g., due to cognitive fatigue or translation errors) or 

owing to bad sampling, which are reasons that would be unrelated to formative measurement. 

We believe that, if this is the case, the problems will be uncovered by the combined use of the 

guidelines below. For example, if a loading is lower than .5 due to response error, it is unlikely 

that the following three criteria will be simultaneously met: (a) the corresponding indicator will 

have a full collinearity variance inflation factor of 3.3 or lower; (b) the corresponding indicator 

weight will be significantly different from zero; and (c) the corresponding indicator effect size 

will be .02 or greater. These three criteria refer to three of the guidelines discussed in the section 

that follows. 

 

6. Formative measurement and the assessment of its quality 

In the following sub-sections, we provide a set of recommendations for formative 

measurement and the assessment of the quality of that form of measurement. They refer to the 

use of causal arrows pointing in or out of factors, factor reliability, indicator redundancy, 

significance of indicator weights, indicator effect sizes, Simpsons’ paradox instances associated 

with indicators, model-wide factor redundancy, and use of analytic composites. While some of 

these recommendations have been made before, others are new. Moreover, this is to our 

knowledge the first time that recommendations are anchored on a new measurement residual 

theory, namely MRT, which is a novel contribution made in this paper. 
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6.1. No causal arrows pointing in or out 

Consistently with our discussion of MRT, we view factors as corresponding to mental 

ideas that must exist in the mind of a researcher before the person devises questions or question-

statements to measure them. Therefore, from a factor-indicator causal direction perspective, 

factors always cause indicators, whether measurement is reflective (one-dimensional) or 

formative (multi-dimensional). The cause must always exist before the effect. The notion that 

factors cause indicators is usually represented via arrows pointing out from factors to their 

corresponding indicators. 

At the same time, as we have seen before in our MRT formulation, a factor can be seen as 

an aggregation of indicators and measurement residual, where the measurement residual is akin 

to an “extra indicator” that is uncorrelated with the actual indicators associated with the factor. 

This aggregation type of relationship is often thought of as one with arrows pointing in, from the 

indicators and measurement residual, to the factor. But, since factors always cause indicators, 

whether measurement is reflective or formative, using arrows pointing in or out to represent 

factor-indicator associations can be confusing. Thus, we recommend that arrows pointing in or 

out should generally be avoided outside schematic representations (as we do in our discussion of 

MRT), particularly in empirical studies reporting results of analyses employing indicators. 

 

6.2. Acceptable factor reliability 

From MRT we know that the measurement residual weight equals the positive square 

root of the complement of the true reliability of a factor: 𝜔𝑖𝜀 = √1 − 𝜌𝑖. Hence, it follows that 

the true reliability equals the complement of the measurement residual weight squared, or 𝜌𝑖 =

1 − 𝜔𝑖𝜀
2. The measurement residual weight squared (𝜔𝑖𝜀

2) equals the percentage of explained 
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variance in the factor that is accounted for by the measurement residual. An important MRT 

assertion is that the measurement residual is added to the true composite to yield the 

corresponding factor, and thus contributes to widen the spread of the factor scores away from the 

true values. 

We should expect the measurement residual to account for a relatively low amount of the 

variance in the factor, with most of that variance being accounted for by the true composite. 

Arguably this should be lower than .32 (or 32 percent), which is the amount of variance 

explained in the factor that is outside the region comprising -1 and 1 standard deviations from the 

true factor scores. Falling in these outer regions (left and right) is often associated with the idea 

of significant difference from the true values (Kock, 2016; Kock & Hadaya, 2018; Miller & 

Wichern, 1977; Spatz, 2010). Therefore, it is reasonable to expect the quantity 𝜔𝑖𝜀
2 to be lower 

than .32, which means a true factor reliability (𝜌𝑖) of .68 or greater. In other words, true 

reliabilities for factors should be .68 or greater, as a condition for acceptable formative 

measurement quality. It is interesting to note that, given MRT’s formulation, this also applies to 

reflective latent variables; in fact, this recommendation is in line with reliability 

recommendations for reflective measurement (Kline, 2010). 

As noted earlier, fairly accurate estimates of the true reliabilities for factors can be 

obtained via maximum likelihood confirmatory factor analysis (Kline, 2010; Mueller, 1996), and 

the consistent partial least squares technique (Dijkstra & Schermelleh-Engel, 2014; Kock, 2019). 

In our empirical illustration, discussed later in this paper, true reliability estimation employs the 

consistent partial least squares technique (Kock, 2019). 
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6.3. Low indicator redundancy 

As illustrated in our discussion of MRT, formative measurement attempts to capture 

different dimensions of the same mental idea, which itself is measured by a factor. If the 

dimensions captured are really conceptually different from one another, they should ideally be 

completely non-redundant and thus uncorrelated. However, this goal is theoretical and typically 

not achievable with actual populations, which are finite. In finite populations, nonzero 

correlations among formative indicators are to be expected, even due to spurious influences, so a 

certain amount of redundancy may occur. However, this redundancy should be below an 

acceptable level (Cenfetelli & Bassellier, 2009; Kock, 2014; Kock & Lynn, 2012; Petter et al., 

2007). 

Full collinearity variance inflation factors have been proposed as a measure of 

redundancy, with values of 3.3 or below being an indication of no significant redundancy among 

observed variables (Kock & Lynn, 2012). This same criterion has also been demonstrated to 

capture pathological common variation, through a common method bias test relying on full 

collinearity variance inflation factors (Kock, 2015a). Full collinearity variance inflation factors 

applied to indicators can be easily calculated through Eq. 6. 

 

𝑉𝐼𝐹𝑖 = 1 (1 − 𝑅𝑖
2)⁄ . (Eq. 6) 

 

In Eq. 6, 𝑉𝐼𝐹𝑖 is the full collinearity variance inflation factor for an indicator indexed by 𝑖 

of a factor, and 𝑅𝑖
2 is the percentage of explained variance in that indicator by the other 

indicators that are associated with the same factor. Unlike the correlation coefficient, which can 

be seen as a measure of redundancy between two indicators, the full collinearity variance 

inflation factor for each indicator is a measure of redundancy among each indicator and all of the 

other indicators associated with the same factor. Consistently with the foregoing discussion, we 
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suggest that all full collinearity variance inflation factors for the indicators of a factor should be 

3.3 or lower, as a condition for acceptable formative measurement quality. 

 

6.4. Statistically significant weights 

In MRT a factor is mathematically defined as a weighted sum of its indicators and 

measurement residual. Since we expect the measurement residual to be relatively low, it follows 

that we also expect the true reliability associated with a factor to be relatively high. Given 

MRT’s formulation, where a factor’s true reliability is the variance explained in the factor by the 

indicators, this would consequently lead to the expectation that each of the indicator weights be 

significantly different from zero. If an indicator weight is close to zero, then the indicator in 

question would typically make a negligible contribution to the explained variance in the 

corresponding factor. 

Whether an indicator weight is significantly different from zero can be ascertained via the 

calculation of the confidence interval with left and right limit values of 𝜔 − 𝑧𝜎 and 𝜔 + 𝑧𝜎, 

where: 𝜔 is the indicator weight, 𝑧 is the z-score associated with the sum of the confidence level 

and half of the significant level chosen (e.g., .95 + . 05 2⁄ = .975; 𝑧.975 = 1.96), and 𝜎 is the 

standard error associated with the indicator weight. If the confidence interval does not contain 

the number zero, we can then conclude that the indicator weight is significantly different from 

zero. Alternatively, one can ascertain whether an indicator weight is significantly different from 

zero by calculating a one-tailed P value associated with the weight, and checking if that P value 

is lower than a generally accepted threshold (usually .05); the P value being lower would suggest 

that the weight is significantly different from zero. One way of another, all indicator weights are 
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expected to be significantly different from zero in a statistical sense, as a condition for acceptable 

formative measurement quality. 

 

6.5. Acceptable indicator effect sizes 

From MRT we derive the expectation that indicator weights be significantly different 

from zero. But statistical significance tests are highly sensitive to sample size, regardless of 

whether they are based on confidence intervals or P values. This is due to the fact that standard 

errors decrease with sample size, and is true also for statistical significance tests applied to 

indicator weights. The larger the size of the sample being analyzed, the more likely it is that a 

small indicator weight will be found to be significantly different from zero in a statistical sense. 

This can lead to type I errors, where indicator weights are found to be nonzero when, in fact, 

they are zero at the population level. 

Effect sizes (Cohen, 1988; 1992; Kock & Hadaya, 2018) are calculated to avoid the 

above-mentioned shortcoming of statistical significance tests. In the context of multivariate least 

squares regression, the most widely used measure of effect size is Cohen’s f-squared coefficient 

(Cohen, 1988; 1992), which is calculated though Eq. 7. In Eq. 7, 𝑓𝑖𝑗
2 is Cohen’s f-squared 

coefficient for the indicator 𝑗 of factor 𝑖, ∆𝑅𝑖𝑗
2  is the incremental contribution of the indicator 𝑗 to 

the percentage of explained variance in the factor 𝑖, and 𝑅𝑖
2 is the total percentage of explained 

variance in the factor 𝑖 by all of the indicators (or the true reliability associated with the factor). 

Another measure of effect size that has been frequently used in the past is simply ∆𝑅𝑖𝑗
2 , which is 

usually slightly lower than Cohen’s f-squared coefficient, and is thus seen as leading to more 

conservative assessments of effect size (Kock & Hadaya, 2018). 

 

𝑓𝑖𝑗
2 = ∆𝑅𝑖𝑗

2 (1 − 𝑅𝑖
2)⁄ . (Eq. 7) 
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By convention, effect sizes of .02, .15, and .35 are respectively termed small, medium, 

and large; and effect sizes below .02 are considered to be too small to be associated with non-

negligible effects (Cohen, 1992; Kock & Hadaya, 2018). For example, a rather small indicator 

weight of .05 would be found to be statistically significant with a sample size of 5,000, whether 

we used a confidence interval or P value to assess significance. However, the effect size 

associated with the corresponding indicator (estimated through Cohen’s f-squared coefficient) 

would be approximately .008, assuming a reliability of .68 (the minimum acceptable reliability). 

This would be well below .02 and thus too small to be non-negligible. As a general rule 

consistent with the foregoing discussion, we argue that indicator effect sizes should be .02 or 

greater, as a condition for acceptable formative measurement quality. 

 

6.6. No Simpsons’ paradox instances 

As mentioned before, in MRT the true reliability associated with a factor is defined as the 

amount of variance explained in the factor by the corresponding indicators. Normally each 

indicator is expected to contribute positively to the variance explained in the factor. However, 

this is not the case when an instance of Simpsons’ paradox (Pavlides & Perlman, 2009; Wagner, 

1982) occurs for a given indicator of a factor. When Simpsons’ paradox occurs in this context, 

the indicator in question makes a negative individual contribution to the variance explained in 

the factor (Kock & Gaskins, 2016; Pearl, 2009). 

An easy way to identify an indicator associated with an instance of Simpsons’ paradox is 

to inspect the weights and loadings associated with the indicator. Simpsons’ paradox is 

characterized by an indicator’s weight and loading presenting different signs (Kock & Gaskins, 

2016). For example, a loading may be positive and the weight negative, or vice-versa. In such a 
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case, the negative contribution to the variance explained in the factor suggests that measurement 

model misspecification occurred; i.e., the possibility that the indicator does not actually belong to 

the factor, in a manner of speaking. Given this, we argue that no Simpsons’ paradox instances 

should exist in connection with any indicator of a factor, as a condition for acceptable formative 

measurement quality. 

 

6.7. Low model-wide factor redundancy 

Within the framework put forth by MRT, formative measurement aims to capture 

different dimensions of the same mental idea, which is itself measured by a factor. In this context 

it is important to ensure that the indicators used in formative measurement capture different 

dimensions of the same mental idea, and not of different mental ideas that are measured by 

different factors in the same model. In other words, it is important to ensure that indicators used 

in formative measurement capture variation from their own factor, and not from other factors. If 

correlations exist among indicators of one formative factor and other factors, those correlations 

should be entirely due to the network of causal effects linking the factors. They should not be 

due to the indicators associated with a factor mistakenly measuring other factors. 

Full collinearity variance inflation factors applied to factors can be used to test for the 

above, in a way that is similar to their use at the indicator level (discussed earlier). Full 

collinearity variance inflation factors have been proposed as a measure of model-wide 

pathological redundancy among factors, with values of 5 or below being an indication of no 

significant redundancy (Kock & Lynn, 2012; Kock, 2015a). A recent study suggests the 

threshold of 10 (instead of 5) in models where all latent variables are modeled as factors and 

none as composites (Kock & Dow, forthcoming).  
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These full collinearity variance inflation factors would be calculated for each factor 

indexed by 𝑖 as 𝑉𝐼𝐹𝑖 = 1 (1 − 𝑅𝑖
2)⁄ , where 𝑅𝑖

2 is the percentage of explained variance in the 

factor by all of the other factors in the model. In line with this discussion, we suggest that all full 

collinearity variance inflation factors for the factors in a model should be 5 or lower. Alternately, 

the more relaxed rule that they should be 10 or lower (see: Kock & Dow, forthcoming), could be 

used as a condition for acceptable formative measurement quality. 

 

6.8. Use of analytic composites 

Based on conceptual foundation provided by MRT we can assume that low indicator 

redundancy is a desirable characteristic in formative latent variable measurement. However, this 

leads to low correlations among indicators and thus low correlations among indicators and their 

factors. Consequently, whenever low indicator redundancy occurs, factor reliabilities will be low 

unless many indicators are used for formative measurement. However, low indicator redundancy 

leads to low loadings and weights, particularly if many indicators are used, with the values of the 

weights approaching those of the loadings. In fact, zero correlations among indicators, or no 

redundancy, would lead to weights and loadings of exactly the same magnitude. In this scenario, 

low weights would tend to be non-significant and associated with very small effect sizes. 

The competing trends above can be balanced by the use of analytic composites to capture 

the variation from indicators, using the same weights as in the original analysis (prior to the 

creation of the analytic composites), for those indicators that individually do not pass tests of 

acceptable formative measurement quality. Such analytic composites will, by definition, 

incorporate variation only from the indicators used; i.e., they will be akin to instrumental 

variables (Arellano & Bover, 1995; Kline, 2010). Using analytic composites in this way should 
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ensure that the reliability associated with factors will reach acceptable levels, as long as the 

analytic composites themselves meet acceptable formative measurement quality criteria. This 

will in turn happen if the analytic composites aggregate indicators that are indeed formatively 

associated with the same latent variable. 

Therefore, we propose that analytic composites should be used to aggregate indicators 

that individually do not meet acceptable formative measurement quality criteria, using the 

original weights, as long as the analytic composites themselves meet those criteria. Normally the 

addition or removal of an indicator to or from an analytic composite will affect whether the 

analytic composite meets the criteria. This property can be used to define what indicators end up 

being part of the analytic composite, what indicators remain separate, and what indicators are 

completely excluded from the factor. 

 

7. Empirical illustration 

In this section, and component sub-sections, we illustrate formative measurement in light 

of our proposed MRT and related model revisions to address the related recommendations aimed 

at promoting acceptable formative measurement quality. Our illustration is based on data from 

290 team-based product innovation efforts conducted in organizations in the Northeastern U.S. 

These team efforts led to the creation of new products, or major redesign of existing products; 

comprising manufacturing goods, services, and information products. Examples of such products 

are car parts, airplane engines, courses about academic topics, indices used for organizational 

planning, and software; among others. 
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7.1. The illustrative model 

The illustrative model used for analyses is shown in Figure 3. This model has been 

developed based on media naturalness theory (DeRosa et al., 2004; Kock, 2004; 2005; Serrano & 

Karahanna, 2016), from which various empirical studies have been derived and validations 

conducted (Akgün et al., 2014; Kock & Lynn, 2012; Kock et al., 2006; Serrano & Karahanna, 

2016; Zahedi et al., 2016). The model contains four latent variables: electronic communication 

media use (ECM) by each product innovation team, measured formatively through 16 indicators; 

project management techniques use (Prjmgt) by each team, measured reflectively through 3 

indicators; product innovation efficiency (Effic) of each team, measured reflectively through 5 

indicators; and new product success (Success) of each team, measured reflectively through 7 

indicators. 

 

 
Figure 3. Illustrative model 

 

 

The decisions as to whether each of the latent variables were treated as formative or 

reflective were made after the data was collected and analyzed, using the loadings rule discussed 

earlier, and were consistent with theoretical expectations at the design stage of the question-

statements. Appendix C provides a list of the question-statements associated with these latent 

variables and corresponding indicators. All of the reflective latent variables passed widely used 
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measurement assessment tests addressing convergent validity, discriminant validity, and 

reliability (Kline, 2010; Kock & Lynn, 2012). 

While our goal in this paper is not to test the model empirically, but to use it for 

illustration purposes, it is useful for readers to know that the model incorporates the following 

beliefs in the context of geographically dispersed product innovation teams. Electronic 

communication media use (ECM) is believed to facilitate and thus cause an increase in project 

management techniques use (Prjmgt), which in turn mediates its (i.e., ECM’s) positive impact on 

product innovation efficiency (Effic) and new product success (Success). An important element 

of the model is the belief that technology use (i.e., ECM) does not exert its positive effects, with 

geographically dispersed product innovation teams, without the concomitant use of project 

management techniques. In other words, technology alone is not of much help to product 

innovation teams without the use of project management techniques. 

Our analyses were conducted with the software WarpPLS 6.0 (Kock, 2018), because this 

software conveniently estimates true composites and factors through its “Factor-Based PLS Type 

CFM3” algorithm in a way that is fully compatible with our MRT formulation and equations 

(Kock, 2015b; 2017; Kock & Sexton, 2017). The free trial version of this software is a full 

implementation (not a demo version) and is available for approximately 3 months. Moreover, 

this software estimates all of the coefficients needed for formative measurement model 

assessment: true factor reliabilities, full collinearity variance inflation factors for indicators and 

latent variables, true weights and respective P values, indicator effect sizes, and weight-loading 

signs for Simpsons’ paradox identification. Finally, this software provides a specialized feature 

that allows for the creation of analytic composites. The software features employed yielded 

intermediate and final results that were checked with other widely used software tools such as 
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SPSS, MATLAB, and various R packages. These checks often had to rely on extensive manual 

work, and generally suggested that the features yield trustworthy results. 

 

7.2. Results of analyses before and after revision 

Tables 1 and 2 show the measurement quality assessment results prior to formative 

variable revision, and after revision, respectively. The revision involved the use of an analytic 

composite to aggregate indicators that did not individually meet formative measurement quality 

criteria. 

 

Table 1. Measurement quality assessment results prior to formative variable revision 

Indicator weights, P values, FCVIFs, WLSs and ESs 

  Weight P value FCVIF WLS ES 

ECM1 .195 <.001 4.434 1 .047 

ECM2 .055 .171 4.693 1 .024 

ECM3 .124 .016 1.217 1 .070 

ECM4 .129 .013 1.344 1 .029 

ECM5 .137 .009 1.327 1 .084 

ECM6 .166 .002 1.395 1 .061 

ECM7 .157 .003 1.392 1 .102 

ECM8 .101 .040 1.445 1 .028 

ECM9 .154 .004 3.635 1 .040 

ECM10 .036 .270 3.496 1 .010 

ECM11 .125 .016 1.406 1 .000 

ECM12 .072 .108 1.472 1 .045 

ECM13 .087 .067 1.410 1 .032 

ECM14 .091 .059 1.388 1 .010 

ECM15 .031 .298 1.632 1 .004 

ECM16 .096 .048 1.713 1 .004 

Model-wide latent variable FCVIFs and reliabilities 

 ECM Prjmgt Effic Success  

FCVIF 1.092 1.525 1.812 1.565  

FR .780 .800 .897 .966  

Notes: FCVIF = full collinearity variance inflation factor; WLS = weight-loading sign (-1 = weight and loading 

with different signs); ES = effect size; FR = true reliability associated with factor; shaded rows refer to indicators 

that did not pass measurement quality criteria. 

 

 

The acronym FCVIF refers to full collinearity variance inflation factor. All FCVIFs are 

shown for indicators and factors. WLS refers to weight-loading sign (-1 means that the weight 

and loading have different signs); ES refers to indicator effect size; and FR refers to the true 
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reliability associated with factor. The shaded rows in Table 1 refer to indicators that did not pass 

one or more of the measurement quality criteria discussed earlier. 

 

Table 2. Measurement quality assessment results after formative variable revision 

Indicator weights, P values, FCVIFs, WLSs and ESs 

  Weight P value FCVIF WLS ES 

ECM3 .178 <.001 1.183 1 .105 

ECM4 .162 .003 1.287 1 .039 

ECM5 .267 <.001 1.387 1 .172 

ECM6 .189 <.001 1.310 1 .073 

ECM7 .217 <.001 1.349 1 .148 

ECM8 .133 .011 1.369 1 .039 

AC(1-2,9-16) .228 <.001 1.713 1 .130 

Model-wide latent variable FCVIFs and reliabilities 

 ECM Prjmgt Effic Success  

FCVIF 1.126 1.551 1.809 1.569  

FR .728 .800 .897 .966  

Notes: the analytic composite AC(1-2,9-16) aggregates the indicators that did not pass measurement quality 

criteria (shaded cells in previous table); after revision (this table), all indicators and analytic composite pass 

measurement quality criteria. 

 

 

The analytic composite AC(1-2,9-16), shown in Table 2, aggregates the indicators that 

did not pass measurement quality criteria. The indicators were aggregated initially based on their 

original weights; these changed after standardization, in terms of their absolute values, but 

retained the same relative weight proportions against one another. The criteria violations are 

indicated in shaded cells in the previous table. These indicators are ECM1, ECM2, and ECM9 ... 

ECM16. After the revision leading to the removal of the offending indicators as standalone 

indicators and their aggregation into the analytic composite, all remaining indicators (i.e., ECM3 

… ECM8) and analytic composite AC(1-2,9-16) passed measurement quality criteria. 

It is noteworthy that the path coefficient for the link ECM → Prjmgt was .265 prior to 

formative variable revision, and .313 after revision. Since the model arguably has a sound 

theoretical basis, this increase in path coefficient strength is consistent with the idea that the 

revision led to the use of a better combination of indicators and weights with respect to formative 

measurement. 
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It is also noteworthy that if we removed the analytic composite from the set of indicators, 

this path coefficient would display a slight increase to .320; but its factor reliability would go 

down to .670, which is below the recommended threshold of .680 for acceptable factor 

reliability. In other words, the slight increase from .313 to .320 may “look good” from a 

theoretical standpoint but might in fact be due to spurious capitalization on error, since it is 

associated with an increase in the magnitude of the measurement residual. This possible 

capitalization on error is prevented by the combined application of the formative measurement 

quality assessment criteria. 

 

7.3. What if we use PLS Mode B? 

Researchers who subscribe to the use of classic (as opposed to factor-based, see: Kock, 

2015b; 2019; Kock & Sexton, 2017) partial least squares techniques for analyses of the type 

discussed here may be tempted to use the algorithm known as Mode B, also known as the 

“formative mode” (Lohmöller, 1989), to assess formative measurement quality. The problematic 

nature of Mode B has been demonstrated before in various contexts (Aguirre-Urreta & Marakas, 

2013; Kock & Mayfield, 2015). 

Further, since Mode B, like all classic partial least squares techniques, generates 

composites, it is clearly incompatible with our proposed formulation of factors in MRT. It should 

be noted that our analyses discussed above do not employ classic partial least squares techniques 

(for a comprehensive discussion, see: Lohmöller, 1989), but rather factor-based techniques that 

explicitly model measurement error building on reliabilities obtained through the consistent 

partial least squares procedure (Dijkstra & Schermelleh-Engel, 2014; Kock, 2015b; Kock 2018; 

Kock & Sexton, 2017). 



 35 

In line with the views above, critical of Mode B, our analyses discussed below suggest 

that this classic partial least squares mode generates an inordinate number of Simpson paradox 

instances at the indicator level. These analyses employed Mode B for the formative latent 

variable and Mode A for the reflective latent variables, as well as the path weighting scheme 

(Adelman & Lohmoller, 1994; Kock & Sexton, 2017). Mode A is also known as the “reflective 

mode” in classic partial least squares parlance (Lohmöller, 1989).  

This problem with Mode B is illustrated in Table 3, where shaded cells indicate the 

occurrence of such instances of Simpson’s paradox. After multiple attempts on our part, it seems 

that if we use Mode B it is virtually impossible for us to revise our formative latent variable to 

meet our recommended measurement quality criteria. This pattern of Simpson’s paradox 

occurrence is virtually identical to that found by Kock & Mayfield (2015). 

 

Table 3. Many Simpson’s paradox instances when Mode B is used 

Indicator weights, P values, FCVIFs, WLSs and ESs 

  Weight P value VIF WLS ES 

ECM1 -.321 <.001 4.434 -1 .068 

ECM2 .405 <.001 4.693 1 .156 

ECM3 .309 <.001 1.217 1 .154 

ECM4 -.113 .026 1.344 -1 .023 

ECM5 .402 <.001 1.327 1 .218 

ECM6 -.056 .168 1.395 -1 .018 

ECM7 .371 <.001 1.392 1 .211 

ECM8 .024 .338 1.445 1 .006 

ECM9 -.104 .036 3.635 -1 .023 

ECM10 .175 .001 3.496 1 .042 

ECM11 -.322 <.001 1.406 -1 .001 

ECM12 .573 <.001 1.472 1 .313 

ECM13 .157 .003 1.410 1 .051 

ECM14 -.136 .009 1.388 -1 .013 

ECM15 .012 .422 1.632 1 .001 

ECM16 -.185 .048 1.713 -1 .006 

 

 

As mentioned before, each indicator is expected to contribute positively to the variance 

explained in the factor to which it is theoretically associated at the questionnaire design stage. 

When an instance of Simpsons’ paradox occurs for a given indicator of a factor, this means that 
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the indicator in question makes a negative individual contribution. This suggests that Mode B 

calculates factor scores in a way that inflates the contribution of some indicators to the variance 

explained in their factor, to make up for the negative contributions of other indicators. This likely 

leads to weights that defy theoretical expectations held by the questionnaire designer (e.g., the 

various negative weights), and possibly also defy commonsense assumptions about the 

phenomena being investigated. 

 

8. Discussion 

When formative measurement is used, the indicators are often viewed as causing the 

latent construct to which they are associated. Since the factor associated with the latent construct 

quantifies it, in formative measurement the indicators are seen as causing the factor, in a 

mathematical sense. This view is paradoxical, because the mental idea measured by the factor 

must exist before the question-statements that are quantified through the indicators are 

developed. In part due to this, and related problems, formative measurement has been heavily 

criticized in the past. Our perspective, discussed in this paper, is that formative measurement can 

indeed be used, as long as it is properly conceptualized and certain precautions are taken. 

Anchored on a new measurement residual theory (acronym MRT), of which key elements 

were proposed in this paper, we argued that the indicators-to-factor direction of causal links 

normally associated with formative measurement is misguided. We also proposed a set of 

recommendations for the assessment of formative measurement quality, addressing: factor 

reliability, indicator redundancy, significance of indicator weights, indicator effect sizes, 

Simpsons’ paradox instances associated with indicators, model-wide factor redundancy, and use 

of analytic composites. These are summarized in Table 4. 
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Table 4. Assessment of formative measurement quality 

Goal Recommendation 

Ensure construct-indicator semantic 

coherence. 

All question-statements associated with the same latent construct should 

refer to the same unit of analysis. Indicators associated with question-

statements that fail this semantic assessment check should be either 

removed from the analysis or re-assigned. 

Determine whether to treat a latent 

variable as formative. 

After any needed indicator removals or re-assignments, latent variables for 

which all indicators have loadings equal to or greater than .5 should be 

treated as reflective. If that is not the case, then they should be treated as 

formative, following the recommendations below. (If the loadings are 

lower than .5 for reasons such as response error or bad sampling, which are 

unrelated to formative measurement, these problems will arguably be 

uncovered by the combined use of the recommendations below.) 

Avoid confusion about factor-

indicator causality. 

Causal factor-indicator arrows pointing in or out of factors should 

generally be avoided, outside schematic representations (e.g., regressand-

regressor diagrams). 

Ensure acceptable factor reliability. True reliabilities for factors should be .68 or greater. 

Ensure low indicator redundancy. All full collinearity variance inflation factors for the indicators of a factor 

should be 3.3 or lower. 

Ensure statistically significant 

factor-indicator associations. 

All indicator weights should be significantly different from zero in a 

statistical sense. 

Avoid excessively weak factor-

indicator associations. 

Indicator effect sizes should be .02 or greater, even if the corresponding 

weights are significantly different from zero in a statistical sense. 

Foster interpretational clarity. No Simpsons’ paradox instances should exist in connection with any 

indicator of a factor. 

Ensure low factor redundancy. All full collinearity variance inflation factors for the factors in a model 

should be 5 or lower. Alternatively, the more relaxed rule that they should 

be 10 or lower (see: Kock & Dow, forthcoming) can be used. 

Avoid loss of variation from non-

conforming indicators. 

Analytic composites should be used to aggregate indicators that 

individually do not meet acceptable formative measurement quality 

criteria, using the original weights, as long as the analytic composites 

themselves meet those criteria. 

 

 

Our new conceptualization and related theoretical elements refer primarily to 

measurement error arising from the use of questionnaires. It incorporates key elements from two 

fairly well-established theoretical frameworks. These frameworks form the foundation of latent 

variable measurement and structural equation modeling, but to our knowledge have never had 

before their key elements integrated into a single theory. The frameworks in question are classic 

measurement error theory (Nunnaly, 1978; Nunnally & Bernstein, 1994) and the common factor 

model (Kline, 2010; MacCallum & Tucker, 1991). 

Additionally, we defined analytic composites as aggregations of indicators without 

measurement error, which makes them different from factors. We argued that the weights of 
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analytic composites should be defined by their designer; based on the results of factor-based 

analyses, or prior theory and related research. It is important to stress that, in our definition, we 

noted that one common characteristic of analytic composites is that they are designed to serve a 

purpose, providing as examples the Standard & Poor's 500 and the Dow Jones Industrial 

Average, which are stock market indices; and the Gini coefficient, a country wealth distribution 

index. We also showed that analytic composites can be used to aggregate indicators that do not 

individually pass formative measurement quality tests. We used the term analytic composite 

instead of index to avoid confusion with the terminology normally used in structural equation 

modeling, where the word index is frequently used to refer to measures of model fit. 

 

9. Conclusion 

In this paper, formative measurement was illustrated in light of our proposed 

measurement residual theory, and related model revisions needed to address the 

recommendations to ensure acceptable formative measurement quality. The illustrative study 

employed for this was based on data from 290 teams who conducted product innovation projects 

in organizations in the Northeastern U.S. The teams used various electronic media to 

communicate. The projects conducted by the teams led to the creation of new products, or major 

redesign of existing products; which included manufacturing goods, services, and information 

products. 

We demonstrated the problematic nature of the use the partial least squares algorithm 

known as Mode B, also branded as the “formative mode” (Lohmöller, 1989), when it is used to 

estimate models with formative latent variables. Our analyses showed that Mode B generates an 

inordinate number of Simpson paradox instances at the indicator level. When an instance of 
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Simpsons’ paradox occurs for a given indicator of a factor, the indicator in question makes a 

negative individual contribution to the explained variance in the factor; possibly defying 

theoretical expectations held by the questionnaire designer and commonsense assumptions about 

the phenomena being investigated. 

Our perspective and related recommendations differ significantly from previous 

guidelines provided in the context of partial least squares and related composite-based methods. 

They also differ from guidelines provided in the context of maximum likelihood and related 

methods (Bollen, 2011; Diamantopoulos, 2011). Formative measurement implementation and 

assessment in structural equation modeling employing maximum likelihood and related methods 

typically rely on modeling indicators as being part of the structural model, as opposed to being 

part of the measurement model (Bollen, 2011). As such, problematic identification issues 

frequently emerge (Diamantopoulos, 2011; Hsu et al., 2018). Our proposed solutions for 

formative measurement implementation and assessment are not expected to make identification 

problems worse, but rather to ameliorate them. 

This paper makes theoretical and methodological contributions that we hope will help 

researchers implement formative measurement in ways that are scholarly defensible from a 

measurement quality perspective. We also hope that the new theoretical perspective and related 

measurement quality assessment recommendations will take the ongoing debate on formative 

measurement one step further.  
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Appendix A: Derivation of true composite weights equation 

The true composite weights 𝜔𝑖 (stored in a column vector) must satisfy the equation 

below, where 𝑥𝑖 is a matrix where each column refers to one of the indicators associated with 

composite 𝐶𝑖 (and thus with factor 𝐹𝑖); 𝜆𝑖
′
 is the transpose of 𝜆𝑖, the column vector storing the 

loadings associated with the indicators; 𝜃𝑖 is the matrix of indicator error terms; 𝛴𝑥𝑖𝑥𝑖 is the 

covariance matrix of the indicators; and 𝛴𝑥𝑖𝜃𝑖 is the matrix of covariances among indicators and 

their individual errors. The superscript −1 denotes the classic matrix inversion; the function 

𝑑𝑖𝑎𝑔(∙) returns a matrix with only its diagonal elements different from zero; and the superscript 

+ denotes the Moore–Penrose pseudoinverse transformation. 

 

𝜔𝑖 = 𝛴𝑥𝑖𝑥𝑖
−1 (𝛴𝑥𝑖𝑥𝑖 − 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖)) 𝜆𝑖

′+.  

 

From our previous discussion on MRT, we know that 

    𝑥𝑖 = 𝐹𝑖𝜆𝑖
′ + 𝜃𝑖, 𝐹𝑖 = 𝑥𝑖𝜔𝑖 + 𝜀𝑖𝜔𝑖𝜀 . 

Combining these two equations we obtain 

    𝑥𝑖 = (𝑥𝑖𝜔𝑖 + 𝜀𝑖𝜔𝑖𝜀)𝜆𝑖
′ + 𝜃𝑖 → 

    𝑥𝑖 = 𝑥𝑖𝜔𝑖𝜆𝑖
′ + 𝜀𝑖𝜔𝑖𝜀𝜆𝑖

′ + 𝜃𝑖. 
Applying covariance properties to the above we obtain 

    𝛴𝑥𝑖𝑥𝑖 = 𝛴𝑥𝑖𝑥𝑖𝜔𝑖𝜆𝑖
′ + 𝛴𝑥𝑖𝜀𝑖𝜔𝑖𝜀𝜆𝑖

′ + 𝛴𝑥𝑖𝜃𝑖 → 

    𝛴𝑥𝑖𝑥𝑖 = 𝛴𝑥𝑖𝑥𝑖𝜔𝑖𝜆𝑖
′ + 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖) → 

    𝛴𝑥𝑖𝑥𝑖𝜔𝑖𝜆𝑖
′ = 𝛴𝑥𝑖𝑥𝑖 − 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖) → 

    𝜔𝑖𝜆𝑖
′ = 𝛴𝑥𝑖𝑥𝑖

−1 (𝛴𝑥𝑖𝑥𝑖 − 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖)), 

where the superscript −1 denotes the classic matrix inversion. 

In order to isolate 𝜔𝑖 in the equation above, we need to use the Moore–Penrose 

pseudoinverse transformation, because the classic matrix inversion transformation cannot be 

applied to a vector. Doing this, we obtain 

    𝜔𝑖 = 𝛴𝑥𝑖𝑥𝑖
−1 (𝛴𝑥𝑖𝑥𝑖 − 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖)) 𝜆𝑖

′+, 

where the superscript + denotes the Moore–Penrose pseudoinverse transformation. 
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Appendix B: Creating an analytic composite in WarpPLS 

We show below how one can create an analytic composite with the software WarpPLS 

6.0 (Kock, 2018), because this software conveniently allows for this task to be accomplished in a 

way that is fully compatible with our MRT formulation and equations. Once a structural equation 

modeling analysis is conducted with WarpPLS, the menu option “Explore analytic composites 

and instrumental variables” becomes available (see Figure B.1), allowing users to create analytic 

composites. Readers are referred to WarpPLS.com for a 5-minute video on how to conduct a full 

structural equation modeling analysis. To get to this video click on “YouTube videos” and then 

on “SEM Analysis with WarpPLS (all steps)”. 
 

 
Figure B.1. Analytic composites creation menu option in WarpPLS 

 

 

Analytic composites are implemented in WarpPLS as weighted aggregations of indicators 

where the relative weights are set by the user, usually based on one or more existing theories. In 

WarpPLS relative weight values from -1 to 1 are allowed. For example, an analytic composite 

may be defined as the aggregation of 3 indicators where the first indicator’s weight is 

approximately twice that of the second, which is in turn twice that of the third. Here only relative 

weights matter because the actual standardized weights will be calculated by the software. For 

instance, assigning the relative weights as 1, 0.5 and 0.25 (each weight being the preceding 

weight divided by 2) has the same effect as assigning them as 0.3, 0.15 and 0.075. 

Figure B.2 illustrates this process. It shows the analytic composite creation screen, which 

becomes available when the menu option “Explore analytic composites and instrumental 

variables” is selected. At the top we see a list of all indicators available, of which three are 

chosen: “ECUEmail”, “ECUEmaillist”, and “ECUBoard”. The following relative weights are 

assigned to these indicators, respectively: 1, 0.5 and 0.25. The software then aggregates the three 

indicators according to the relative weights assigned, standardizes the result, and recalculates the 

weights. These are now the standardized weights: .665, .333, and .166. Once the “Create” button 

is clicked, an analytic composite is created by the software with the name selected. The default 

option is “ac_NewName”, which can be changed to a more descriptive name. The analytic 
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composite that is created can then be used in the model for a subsequent analysis; as a single 

indicator of a latent variable, or as one of the indicators of a multi-indicator latent variable. 
 

 
Figure B.2. Selecting analytic composite indicators and weights in WarpPLS 

 

 

Also shown are the P values for the weights, in the row labeled “P value”; the variance 

inflation factors for each indicator, in row “VIF”; weight-loading signs, in row “WLS”, where a -

1 indicates a weight and loading of different signs; and the effect sizes associated with each 

indicator, in row “ES”; and correlations with each of the latent variables in the model or 

reliabilities, in row “Correlation/reliability”. The reliabilities provided are the Cronbach’s alpha 

(under the label “CA”) and the composite reliability (under “CR”).  

The reliability measures mentioned above are estimates calculated through the classic 

equations defining the Cronbach’s alpha (see, e.g.: Nunnaly,1978; Nunnally & Bernstein, 1994) 

and the composite reliability (see, e.g.,: Dillon & Goldstein, 1984; Peterson & Yeolib, 2013). 

These reliability measures should not be confused with the true factor reliabilities discussed 

earlier in this paper. Strictly speaking, all composites have a reliability of 1. Therefore, these 

measures should be seen as pseudo-reliabilities. 
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Appendix C: Indicators and question-statements 

A Likert-type scale (0 = “Strongly Disagree” to 10 = “Strongly Agree”) was used for 

each of the indicators listed below. The latent variable “electronic communication media use 

(ECM)” was measured formatively, with different indicators assumed to capture different 

dimensions of the corresponding underlying mental idea, and refers to electronic communication 

tools used in a team project. All other latent variables were measured reflectively, with different 

indicators assumed to capture the one main dimension of the corresponding underlying mental 

idea. The latent variable “team success (Success)” refers to the product developed by the team. 

 

Electronic communication media use (ECM) 
    ECM1. E-mail to fellow team members (1 to 1). 

    ECM2. E-mail to team distribution lists (1 to many). 

    ECM3. Team messaging boards or team discussion forums. 

    ECM4. Shared electronic files. 

    ECM5. Share electronic workspace to facilitate sharing information among team 

members. 

    ECM6. Electronic newsletters that covered project information. 

    ECM7. Auto routing of documents for team member and management approval. 

    ECM8. File transfer protocols (FTP) to attach documents to e-mails and Web pages. 

    ECM9. A Web page dedicated to this project. 

    ECM10. A Web page for this project that contained project specs, market research 

information, and test results. 

    ECM11. Voice messaging. 

    ECM12. Teleconferencing. 

    ECM13. Video conferencing 

    ECM14. Desktop video conferencing 

    ECM15. Attaching audio files to electronic documents. 

    ECM16. Attaching video files to electronic documents. 

 

Project management techniques use (Prjmgt) 
    Prjmgt1. The team followed a clear plan -- a roadmap with measurable milestones. 

    Prjmgt2. There were adequate mechanisms to track the project's progress. 

    Prjmgt3. There were adequate mechanisms to track the project's costs. 

 

Product innovation efficiency (Effic) 
    Effic1. The product was launched within or under the original budget. 

    Effic2. The product came in at or below cost estimate for development. 

    Effic3. The product came in at or below cost estimate for production. 

    Effic4. The product was launched on or ahead of the original schedule developed at 

initial project go-ahead. 

    Effic5. Top management was pleased with the time it took us from specs to full 

commercialization. 

 

New product success (Success) 
    Success1. Met or exceeded volume expectations. 
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    Success2. Met or exceeded sales dollar expectations. 

    Success3. Met or exceeded the 1st year number expected to be produced and 

commercialized. 

    Success4. Overall, met or exceeded sales expectations. 

    Success5. Met or exceeded profit expectations. 

    Success6. Met or exceeded return on investment (ROI) expectations. 

    Success7. Met or exceeded overall senior management’s expectations. 


