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Abstract 

We generally acknowledge the problematic nature of classic statistical significance tests based 

on P-values or confidence intervals. In fact, we demonstrate based on an illustrative model for 

which we created simulated data, that with low and high statistical power, path coefficients in 

structural equation modeling whose true values are zero, routinely end up being found to be 

significantly different from zero at the P < .05 level. However, we argue that we should not do 

away with classic statistical significance tests, and that these tests can be useful but should be 

complemented by other methodological tools, including effect size tests, and tests of common 

method bias. We also argue that high quality theorizing is very important if we are to profitably 

use a combination of classic statistical significance, effect size, and common method bias tests. 
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Introduction 

    We are thankful for the opportunity to write this response to the comprehensive and insightful 

article by Professor R. Murray Lindsay, which is aimed primarily at management accounting 

researchers. We write from the perspective of structural equation modeling (SEM) because most 

statistical significance tests can be conceptually seen as special cases of SEM (Kock, 2019a). 

Broadly speaking, SEM is a general multivariate data analysis method normally used for 

analyses of cross-sectional data obtained via questionnaires, but which can be used with other 

types of data, and which enables researchers to test structural and measurement models 

simultaneously (Kock, 2019a; 2023b). 

    We generally agree with Professor Lindsay’s views about the problematic nature of statistical 

significance tests based on P-values or confidence intervals. We demonstrate based on an 

illustrative SEM model for which we created simulated data, that with both low and high 

statistical power, paths whose true values are zero routinely end up being found to be 

significantly different from zero at the P < .05 level. P-values have historically been used since 

as the generally preferred statistical method to summarize the results of a study, but have often 

been misused, misinterpreted, and misunderstood. This problematic state of affairs drives the 

need for complementary methods. 

    In SEM, the structural model usually involves a set of variables that cannot be measured 

directly without error, known as latent variables (LVs); as well as causal relationships among 

these LVs, which are usually represented through arrows. SEM offers insights that general linear 

models cannot (Dow et al, 2021; Dow et al, 2012, Teklay et al, 2023). For example, as illustrated 

in a recent management accounting study, insights into the complex interrelationships among 

LVs were revealed that were obscured using general linear models (Teklay et al, 2023). More 

often than not the structural model is aimed at representing a theory to be tested based on 

empirical data, where each LV-LV link is associated with one hypothesis to be tested. The 

measurement model is made up of variables that measure the LVs with error, known as 

indicators, typically as responses to question-statements on Likert-type scales in questionnaires. 

    For the SEM analyses presented in this paper, we used the factor-based algorithms 

implemented through the SEM software WarpPLS (Kock, 2023a), which also implements 

composite-based algorithms (a.k.a., classic PLS algorithms, not used here), as well as the factor-
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based algorithms implemented by the R package lavaan (Rosseel, 2012). This was done to 

double-check the results of our analyses. Some of the coefficients reported in this paper could 

only be generated from correlation-preserving LV estimates, which are provided by WarpPLS 

but not by lavaan. Other than that, the factor-based algorithms implemented in WarpPLS yielded 

virtually the same results as the covariance-based full information maximum likelihood 

algorithms implemented in lavaan, mirroring results from past research (Kock, 2019a; 2019b). 

    We argue that we should not do away with classic statistical significance tests, primarily 

because they are not entirely useless, and their usefulness increases when they are employed in 

combination with other tests. For instance, they allow us to correctly identify as likely to be zero 

at the population level, in SEM analyses, many path coefficients whose true values are zero. We 

also argue that classic statistical significance tests need to be complemented by other 

methodological tools, including effect size tests, and common method bias tests. 

    The latter, common method bias tests, are needed because of the strong distorting effect that 

common method variation may have on path coefficients in SEM, which is comparable in terms 

of its magnitude to the distorting effect of sampling error with very small sample sizes. This 

happens even when the amount of common method variation is relatively small, as we will see 

later. Finally, we argue and demonstrate that high-quality theorizing is very important if we are 

to profitably use a combination of classic statistical significance, effect size, and common 

method bias tests. 

 

Illustrative SEM model 

    Our discussion is based on the illustrative SEM model shown in Figure 1, which is used to 

help accomplish the goal of making our discussion meaningful to those in the field of 

management accounting and related fields. The model contains five LVs, associated with the 

following constructs: management accounting commitment (C), accounting for lean enterprise 

(E), throughput accounting (I), activity-based costing (A), and success in a competitive market 

(S). These constructs are assumed to have been measured at the company level, and to have been 

measured with error through Likert-type question-statements in a questionnaire, each through 

five indicators. 
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Figure 1. Illustrative SEM model 

 

 
 

 

    The general idea underlying this model is that a company’s management accounting 

commitment positively influences the company’s success in competitive markets, both directly 

and indirectly through management accounting commitment’s facilitation of the increased use of 

the techniques of accounting for lean enterprise, throughput accounting, and activity-based 

costing. This is a simplified model that is not meant to serve as the basis for future theoretical or 

empirical research. It is nevertheless a helpful model, as it aids us in our task of conducting a 

discussion that is not entirely conceptual or mathematical. From a methodological perspective, 

this model is also helpful because we can create simulated data assuming different population 

values of certain parameters, such as path coefficients. 

    The population values for loadings that we used were kept fixed across simulated datasets, and 

were as follows: C (.700, .700, .700, .700, and .700), E (.800, .800, .800, .800, and .800), I (.600, 

.600, .700, .700, and .800), A (.500, .600, .600, .700, and .700) and S (.550, .600, .650, .700, and 

.750). These loadings, while adding variety to our simulations (and thus generality to our 
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findings), also ensured that all of the simulated datasets we created would pass common 

measurement model quality criteria used in SEM; e.g., for convergent and discriminant validity 

(Kock, 2014; Kock & Lynn, 2012). 

 

Statistical significance tests in SEM 

    Table 1 illustrates the problems with classic statistical significance tests in SEM. It shows path 

coefficient estimates when true paths (path coefficients at the population level) are zero and 

N=100; a situation where we have low statistical power. It also shows path coefficient estimates 

when true paths are zero and N=100,000; a situation where we have high statistical power. 

Ironically, in both cases, with low and high statistical power, three paths whose true values are 

zero end up being found to be significantly different from zero at the P < .05 level. This 

problematic situation is not due to the use of P-values for significance testing, we would have 

similar results if we had used confidence interval tests (Kock, 2016). 

 

Table 1. Estimated paths when true values are zero 

 

Estimated paths 

(N=100) 

C>E (.140), C>I (.102), C>A (.097),  

C>S (.172),  

E>S (.064), I>S (-.168), A>S (-.204) 

Estimated paths  

(N=100,000) 

C>E (.003), C>I (.006), C>A (.000),  

C>S (-.004),  

E>S (.000), I>S (.005), A>S (-.006) 

Note: True paths = 0 that were found to be significant at P < .05 are bolded and underlined. 

 

 

    The reason for the problematic results in the low statistical power scenario (i.e., small sample 

size), is that with small samples we end up having more distortion of coefficients, because larger 

amounts of sampling error are present, leading to larger standard errors and thus more variability 

in the path coefficients across samples taken from the population (our results are based on the 

analysis of one such sample with N=100). For example, the path coefficient for A>S with 

N=100, whose true value was set as zero in our simulation, ended up being a rather strong and 

negative coefficient of -.204, entirely due to random sampling error. 

    The reason for the problematic results in the high statistical power scenario (i.e., large sample 

size), is that with large samples we end up having smaller amounts of sampling error, leading to 
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smaller standard errors; and P-values tend to go down as standard errors decrease. P-values are 

very sensitive to sample size. The result is that, with large samples even tiny path coefficients, 

resulting from random sampling error, may become statistically significant. 

    Does the above mean that we should do away with classic statistical significance tests? It may 

seem odd for us to take this position, but we believe that the answer to this question is “no”, 

primarily because classic statistical significance tests (with P < .05) are not entirely useless, and 

arguably their usefulness increases when they are employed in combination with other types of 

tests. For instance, they allowed us to correctly identify 4 out of 7 path coefficients as likely to be 

zero at the population level. That is, classic statistical significance tests helped somewhat, but we 

argue that they need to be complemented by other methodological tools. One such tool is the use 

of effect size tests. 

 

Effect size tests in SEM 

    Two main measures of effect size are commonly used in SEM. The most widely used is 

Cohen’s f-squared coefficient (Cohen, 1988; 1992), which is calculated as the error-adjusted 

incremental contribution of a predictor LV to the R-squared of the criterion LV to which it 

points. The other measure of effect size commonly used in SEM is the absolute contribution of 

the predictor LV to the R-squared of the criterion LV (Dow et al., 2008, Kock, 2014; Mandal et 

al., 2012). This second measure, calculated as the absolute value of the product between the path 

coefficient and the correlation among the two LVs (i.e., the predictor and criterion LVs), tends to 

yield lower results that take the influences of all predictor LVs into account simultaneously, thus 

being a more conservative and credible effect size estimate (Kock, 2014), and is therefore the 

one we use here. 

    By convention, effect sizes of .02, .15, and .35 are respectively termed small, medium, and 

large (Cohen, 1992; Kock, 2014). Because of this, one can use the threshold of .02 for effect 

sizes in SEM, rejecting path coefficients whose effect sizes are lower than .02; because they are 

too small, being below the threshold for small. This effect size test would assume that path 

coefficients associated with effect sizes lower than .02 are likely to be zero at the population 

level. Table 2 shows path coefficient estimates for our illustrative SEM model, as well as 
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corresponding P-values and effect sizes, when true paths (path coefficients at the population 

level) are zero and N=300; a sample size level often used in empirical research employing SEM. 

 

Table 2. Estimates when true paths are zero and N=300 

 

True paths C>E (.000), C>I (.000), C>A (.000),  

C>S (.000),  

E>S (.000), I>S (.000), A>S (.000) 

Estimated paths C>E (.048), C>I (.130), C>A (.209),  

C>S (.025),  

E>S (-.125), I>S (-.051), A>S (.024) 

P-values C>E (.199), C>I (.011), C>A (.000),  

C>S (.332),  

E>S (.014), I>S (.187), A>S (.338) 

Effect sizes C>E (.002), C>I (.017), C>A (.044),  

C>S (.000),  

E>S (.017), I>S (.003), A>S (.000) 

Note: True paths = 0 that were found to be significant at P < .05 or have effect size > .02 are bolded and 

underlined. 

 

 

    As we can see, three paths whose true values are zero end up being found to be significantly 

different from zero at the P < .05 level with N=300. As noted earlier, we would have similar 

results if we had used confidence interval tests. The paths and corresponding P-values are: C>I 

(.011), C>A (.000), and E>S (.014). The P-value shown as .000 is displayed as such because it is 

lower than .000, not because it is exactly zero. Only one path was found to have an effect size > 

.02. This path and its corresponding effect size are C>A (.044). 

    So, it seems that using effect sizes, and the effect size threshold of .02, allowed us to correctly 

reject, in several instances, the existence of effects that were actually zero (or nonexistent) at the 

population level. In fact, we would have been able to correctly reject 6 out of 7 paths, whereas 

the P < .05 level test allowed us to reject only 4 out of 7 paths. It should be clear to readers, 

based on the discussion in the preceding section, that effect size tests become more useful in 

terms of avoiding false positives as sample sizes increase. 

    However, the same effect size tests will tend to incorrectly reject paths associated with small 

but nonzero effects (i.e., commit false negatives) with large sample sizes. In large datasets 

sampling error will be minimized, thus ensuring that all weak effects are correctly estimated as 

weak, in turn leading to an even larger proportion of false negatives than if small samples are 

used. This bizarre situation would essentially mean that, with effect size tests applied to models 



 8 

with weak but nonzero effects, larger sample sizes would be associated with lower statistical 

power – i.e., a larger proportion of false negatives, as sample sizes increase. 

    Incorrect rejection of paths associated with small but nonzero effects could easily occur in 

studies of the impact of management accounting policies on the successful avoidance of rare 

adverse events, such as policies aimed at preventing factory explosions. In these cases, where 

path coefficients are expected to be weak but nonzero (due to the low amount of variation in the 

main dependent variable), it would be advisable to employ a logistic regression transformation of 

the main dependent variable, which could originally have stored the values 1 and 0 to 

respectively reflect the occurrence or not of an explosion, and then follow that dichotomous-to-

probability variable conversion with a combination of classic statistical significance and effect 

size tests (Kock, 2023c). Based on this, it should be clear to the reader that our recommendation 

cannot simply be something like “use effect size tests and abandon classic statistical significance 

tests”. 

    As we can see from our results, at N=300 the effect size test incorrectly identified the path 

C>A as associated with a nonzero effect at the population level. This type of problem is likely to 

be more frequent at small sample sizes, which again calls for the combined use of effect size and 

classic statistical significance tests in these cases. Still, as we will show in the remainder of this 

paper, these must be combined with at least two other types of methodological tools, namely 

common method bias tests and strong theorizing. The latter, strong theorizing, is not always 

viewed as a methodological tool, but as we will see, it should be because it strongly influences 

the effectiveness of common method bias and other types of tests. 

 

Common method bias in SEM 

    Common method bias is a phenomenon that is caused by the measurement method used in an 

SEM study, and not by the structural model. That is, common method bias is caused by sources 

that influence the LV-indicator associations, and not the LV-LV associations. For example, the 

instructions at the top of a questionnaire may bias the answers provided by different respondents 

in the same general direction, leading the indicators to share a certain amount of common 

variation. In the simplified case where common method variation is assumed to be uniform 
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across all indicators, the amount of common variation is expressed by the corresponding method 

weight coefficient. 

    Two widely used tests for identification of common method bias in SEM analyses are 

Harman’s single factor test (Kock, 2021a), which is based on a total variance explained (TVE) 

measure, and the more sensitive full collinearity variance inflation factors (VIFs) test (Kock, 

2015; Kock & Lynn, 2012). Harman’s single factor test is the most widely used of the two tests, 

even though it has been shown to have serious deficiencies due to low sensitivity in models of 

nontrivial complexity (Baumgartner et al., 2021; Kock, 2021a; Podsakoff et al., 2003). 

    Harman’s single factor test usually entails assigning all indicators of all LVs in a SEM model 

to a single LV, for which the TVE is calculated and compared against the .5 threshold (Kock, 

2021a). If the TVE is lower than .5, then the model is assumed to be free of common method 

bias. The full collinearity VIFs test entails calculating VIFs for all of the LVs in a model, and 

comparing each of them against the threshold of 10. This threshold is recommended in factor-

based SEM analyses; in composite-based analyses, the lower threshold of 3.3 is normally used 

(Kock, 2015; Kock & Lynn, 2012). Should all of the full collinearity VIFs be equal to or lower 

than the threshold, the conclusion is that the model is free of common method bias. 

    In this section, we summarize the average results of simulations where data were generated for 

100,000 model instances, and the sample size for each model was set at 100,000. These 

simulation settings allowed us to virtually eliminate the effect of sampling error. In other words, 

these settings allowed us to understand common method bias in the absence of sampling error. 

This is important because, as we have seen earlier in this paper, sampling error alone can 

significantly distort path coefficients in SEM analyses. 

    Table 3 shows the performance of Harman’s single factor and full collinearity VIFs tests of 

common method bias under weak theory conditions, characterized by all true values of path 

coefficients being zero. We refer to this scenario as one associated with weak theory because all 

hypothesized effects are nonexistent, which characterizes poor quality theorizing – i.e., none of 

the hypothesized effects existed in reality. Various coefficients were estimated when we used a 

method weight that led at least one true path = 0 to be incorrectly estimated as > .197. In this 

situation, we have common method bias that is large enough to lead to problems in terms of 

classic hypothesis-testing based on path coefficients. The .197 value is used here because it has 

been proposed as a critical threshold, being the minimum absolute path coefficient that would be 



 10 

statistically significant with a sample size of 160 in an analysis with statistical significance set at 

.05 and statistical power of .8 (Kock & Hadaya, 2018; Kock et al., 2017). 

 

Table 3. Common method bias tests with weak theory 

 

Method weight .344 

True paths C>E (.000), C>I (.000), C>A (.000),  

C>S (.000),  

E>S (.000), I>S (.000), A>S (.000) 

Estimated paths C>E (.177), C>I (.211), C>A (.242),  

C>S (.135),  

E>S (.122), I>S (.145), A>S (.151) 

Harman's TVE .191 

Full collinearity VIFs C (1.126),  

E (1.105), I (1.134), A (1.156),  

S (1.146) 

Note: True paths = 0 that were estimated as > .197 are bolded and underlined. 

 

 

    As we can see, two paths were sharply distorted by common method bias alone (again, this has 

nothing to do with sampling error), and in ways that would not be truly identified by classic 

statistical significance or effect size tests, regardless of statistical power. And, this happened with 

a relatively small amount of common variation contamination. Here the method weight was only 

.344, the smallest needed for at least one true path = 0 to be incorrectly estimated as > .197. This 

method weight of .344 is much lower than the method weight of .6 frequently used in common 

method bias discussions (Kock, 2015; 2021a). 

    Both the Harman’s single factor and the full collinearity VIFs tests failed to recognize the 

existence of common method bias, in a model where the bias significantly distorted path 

coefficients. Harman’s TVE was calculated at .191, much lower than .5; and no full collinearity 

VIF was even close to 10. That is, under weak theory conditions, both common method bias tests 

performed quite poorly. Generally speaking, poor theory development is a source of a variety of 

problems; including, as we can see, methodological problems. This tends to happen in a stealthy 

way, and highlights the reality that there is no substitute for high quality theorizing in empirical 

research. 
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The importance of strong theorizing in SEM 

    In this section, we consider a scenario in which all true path coefficients (except for C > S) are 

set as .489, which would characterize situations where the theory was well developed (strong 

theory), in the presence of common method bias. The true path for the C > S link is set as .000 

for methodological reasons. The path for the C > S link being .000 means that the mediation in 

the model is assumed to be full. In other words, the model provides a fairly complete view of the 

mediated overall effect of C on S, which is also an indication of strong (or high quality) 

theorizing. 

    The .489 value is a proxy for the midpoint between the path coefficients corresponding to the 

large (.35) and medium (.15) effect sizes proposed by Cohen (1988; 1992), calculated as: 

(√. 35 + √. 15) 2⁄ = .489. Table 4 shows various coefficients estimated when the method 

weight = .344. That is, in this scenario, we have common method contamination, as well as true 

paths that are strong enough for us to assume that the theory underlying the model was well 

developed. 

 

Table 4. Common method bias tests with strong theory 

 

Method weight .344 

True paths C>E (.489), C>I (.489), C>A (.489),  

C>S (.000),  

E>S (.489), I>S (.489), A>S (.489) 

Estimated paths C>E (.583), C>I (.610), C>A (.599),  

C>S (.011),  

E>S (.410), I>S (.413), A>S (.399) 

Harman's TVE .361 

Full collinearity VIFs C (2.456),  

E (3.547), I (3.673), A (3.507),  

S (12.038) 

Note: Instance of correct identification of existing common method bias is bolded and underlined. 

 

 

    Note that the estimated paths were higher than the true paths, which is due to the common 

method contamination. Harman’s single factor test failed to recognize the existence of common 

method bias since the TVE was .361 and thus lower than the .5 threshold. Harman’s single factor 

test would probably have succeeded if there was more common method variation present; i.e., if 

the method weight was much higher than .344. For example, Kock (2021a) showed that with 

strong theorizing Harman’s single factor test works well with method weights of .6 and higher. 
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    On the other hand, the test based on full collinearity VIFs, with a threshold of 10, succeeded in 

identifying the occurrence of common method bias. The highest full collinearity VIF was 12.038 

and thus higher than the threshold of 10. Past research suggests that the success of the full 

collinearity VIFs test here was to be expected, as this test has been presented as more sensitive to 

common method bias than Harman’s single factor test (Kock, 2015; 2023b). The correct 

identification of the presence of common method bias would call for some form of common 

variation removal (Kock, 2021b) to be employed before one can trust hypothesis assessment 

results based on classic statistical significance and effect size tests. 

 

Conclusion 

    In this paper we provided a discussion of the problematic nature of statistical significance tests 

based on P-values or confidence intervals. Among other things, we demonstrated a misleading 

pattern in SEM analyses based on an illustrative model for which we created simulated data. The 

misleading pattern is that with both low and high statistical power, path coefficients whose true 

values are zero routinely end up being found to be significantly different from zero at the P < .05 

level. 

    Nevertheless, we argued that we should not do away with classic statistical significance tests, 

chiefly because such tests can be useful despite their shortcomings. For instance, we showed that 

classic statistical significance tests allow us to correctly identify, in SEM analyses, many path 

coefficients whose true values are zero, as coefficients likely to be zero at the population level. 

We also argued that classic statistical significance tests need to be complemented by other 

methodological tools, including effect size tests, and common method bias tests. 

    We demonstrated that common method bias tests are needed because of the strong distorting 

overall effect that common method variation may have on path coefficients in SEM analyses, 

which is comparable to that of sampling error with very small sample sizes. We showed that this 

tends to happen even when the amount of common method variation is relatively small. Finally, 

we demonstrated that high quality theorizing is very important if we are to beneficially use a 

combination of classic statistical significance, effect size, and common method bias tests. We 

showed that common method bias tests are unlikely to be effective if theorizing is of low quality. 

Also, based on our discussion earlier in this paper, we showed evidence that low-quality 
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theorizing is likely to have negative impacts on the effectiveness of classic statistical significance 

and effect size tests. 

    Good research requires high-quality theory and data, as well as sound analytical techniques. 

As outlined in this essay, there are a variety of statistical approaches that serve to complement 

classic significant tests by enhancing the interpretation of P-values through the augmentation of 

SEM. Regardless of the statistical method employed to analyze the data, it is important to recall 

the words of Sir Ronald Fisher from the early 20th Century: “To call in a statistician after the 

experiment is done may be no more than asking him to perform a post-mortem examination: he 

may be able to say what the experiment died of” (Fisher, 1938). Therefore, when selecting 

appropriate statistical approaches, we must always consider the aim and objective of the 

research, and the nature and type of the data used in the research. We must also be cognizant that 

a single study can only provide a limited amount of information. In the end, replication is critical 

if we are to truly understand and develop the field of management accounting. 
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