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Software use agreement 

 

The use of the software that is the subject of this manual (Sofware) requires a valid license, 

which has a limited duration (usually no more than one year). Individual and organizational 

licenses may be purchased from ScriptWarp Systems, or any authorized ScriptWarp Systems 

reseller. 

 

The Software is provided “as is”, and without any warranty of any kind. Free trial versions of the 

Software are made available by ScriptWarp Systems with the goal of allowing users to assess, 

for a limited time (usually one to three months), the usefulness of the Software for their data 

modeling and analysis purposes. Users are strongly advised to take advantage of those free trial 

versions, and ensure that the Software meets their needs before purchasing a license. 

 

Free trial versions of the Software are full implementations of the software, minus the licenses. 

That is, they are not demo versions. Nevertheless, they are provided for assessment purposes 

only, and not for “production” purposes, such as to analyze data and subsequently publish it as a 

consulting or research report. Users must purchase licenses of the Software before they use it for 

“production” purposes. 

 

Multivariate statistical analysis software systems are inherently complex, sometimes yielding 

results that are biased and disconnected with the reality of the phenomena being modeled. Users 

are strongly cautioned against accepting the results provided by the Software without double-

checking those results against: past empirical results obtained by other means and/or with other 

software, applicable theoretical models, and practical commonsense assumptions. 

 

Under no circumstances is ScriptWarp Systems to be held liable for any damages caused by the 

use of the Software. ScriptWarp Systems does not guarantee in any way that the Software will 

meet the needs of its users. 

 

For more information: 

 

ScriptWarp Systems 

P.O. Box 452428 

Laredo, Texas, 78045 

USA 

www.scriptwarp.com 
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A. Introduction 

    Structural equation modeling (SEM) employing the partial least squares (PLS) method, or 

PLS-based SEM for short, has been and continue being extensively used in a wide variety of 

fields (Kock, 2010; 2014a; 2015d; 2019a). Examples of fields in which PLS-based SEM has 

been used are: cliodynamics (Kock, 2015d), global environmental change (Brewer et al., 2012), 

information systems (Guo et al., 2011; Kock & Lynn, 2012; Kock & Moqbel, 2021; Kock et al., 

2018), international business (Ketkar et al., 2012), marketing (Biong & Ulvnes, 2011; Kock, 

2019b), medicine (Berglund et al., 2012; Melton et al., 2016), nursing (Kim et al., 2012), 

organizational leadership (Kock et al., 2019), and sustainable tourism (Rasoolimanesh et al., 

2017). 

    This software provides users with a wide range of features, several of which are not available 

from other SEM software. For example, this software is the first and only (at the time of this 

writing) to explicitly identify nonlinear functions connecting pairs of latent variables in SEM 

models and calculate multivariate coefficients of association accordingly. Functions whose first 

and second derivatives are lines are modeled, covering a wide variety of noncyclical and mono-

cyclical functions (Kock, 2010; 2016c). 

    Additionally, this software is the first and only (at the time of this writing) to provide classic 

PLS algorithms together with factor-based PLS algorithms for SEM (Kock, 2017; 2019a). 

Factor-based PLS algorithms generate estimates of both true composites and factors, fully 

accounting for measurement error (Kock, 2015b; 2017; 2019a; 2019b; 2019c). They are 

equivalent to covariance-based SEM algorithms; but arguably bring together the “best of both 

worlds”, by being statistically efficient (i.e., achieving consistency at modest sample sizes) and 

generating latent variable estimates that take measurement error into account. 

    Factor-based PLS algorithms combine the precision of covariance-based SEM algorithms 

under common factor model assumptions with the nonparametric characteristics of classic PLS 

algorithms (Kock, 2017; 2019a; 2019b; 2019c). Moreover, factor-based PLS algorithms address 

head-on a problem that has been discussed since the 1920s – the factor indeterminacy problem. 

Classic PLS algorithms yield composites, as linear combinations of indicators, which can be seen 

as factor approximations. Factor-based PLS algorithms, on the other hand, provide estimates of 

the true factors, as linear combinations of indicators and measurement errors (Kock, 2015b; 

2017). 

    All of the features provided have been extensively tested with both “real” data, collected in 

actual empirical studies; as well as simulated data generated through Monte Carlo procedures, 

whereby data is created based on “true” parameter values that the software is expected to 

replicate (Kock & Gaskins, 2016; Kock & Moqbel, 2016; Robert & Casella, 2010). Future tests, 

however, may reveal new properties of these features, and clarify the nature of existing 

properties.  
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A.1. Software installation and uninstallation 

    The software installs automatically from a self-extracting executable file. There are two 

components to the software: the MATLAB Compiler Runtime, and the main software (i.e., 

WarpPLS). The first is a set of free-distribution MATLAB libraries with code that is called by 

the main software. Because the MATLAB Compiler Runtime is used, you do not have to have 

MATLAB (the main MATLAB program) installed on your computer to run WarpPLS. 

    Minimal and harmless changes to the operating system registry are made by the MATLAB 

Compiler Runtime, which are easily reversed upon uninstallation. To uninstall, normally the 

following or equivalent steps (depending on the operating system version used) can be taken: go 

the “Control Panel”, click on “Add or Remove Programs” or “Programs and Features”, and 

uninstall the MATLAB Compiler Runtime. 

    The MATLAB Compiler Runtime 7.14 is used in this version of WarpPLS. This is the same 

MATLAB Compiler Runtime that has been used since version 2.0. The MATLAB Compiler 

Runtime used in version 1.0 is a different one, and thus will not work properly with this version 

of WarpPLS. 

    In most cases, previous versions of WarpPLS and of the MATLAB Compiler Runtime 

may be retained on a user’s computer. Different versions of WarpPLS and of the MATLAB 

Compiler Runtime generally do not interfere with one other. 

    To uninstall the main software program, normally all you have to do is to simply delete the 

main software installation folder. This folder is usually “C:\Program Files\WarpPLS 8.0” or 

“C:\Program Files (x86)\WarpPLS 8.0”, unless you chose a different folder for the main 

software program during the installation process. Then delete the shortcut created by the 

software from the desktop. 

    Both programs, the MATLAB Compiler Runtime and the main software, may be retained 

without harm to your computer. They will not normally interfere with other programs; not even 

with MATLAB (the main MATLAB program), if you have it installed on your computer.  
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A.2. Beta version notice 

    This version of the software is being released as a beta version. As you will see below, it 

incorporates a number of new features, when compared with the previous version. It has 

undergone extensive testing. Nevertheless, given the new features, and the inherent 

interconnectedness of features, it is possible that this beta version will contain more software 

bugs than the corresponding stable version. On the other hand, thanks to the extensive testing 

prior to the release of this beta version to users, it is likely that this beta version will soon be 

upgraded to the status of stable version.  
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A.3. New features in version 8.0 

    Each new version of the software incorporates features that aim at achieving an important end 

goal: to allow users to employ SEM to conduct any of the major statistical tests; from relatively 

simple tests such as comparisons of means, to more sophisticated ones such as nonlinear SEM 

tests employing logistic regression. Among the community of users of this software, there are 

very sophisticated SEM experts that constantly challenge us to implement new data analysis 

features, as well as to make the existing features as easy to use as possible. Because of the 

constant input from our users, including those who are very knowledgeable about SEM, the 

software now arguably provides the most extensive set of features of any SEM software. We 

hope to continue in this path as the SEM field evolves. Below we outline new features added to 

the current version of the software. 

    Logistic regression variables. The menu option “Explore logistic regression” now allows you 

to create a logistic regression variable as a new indicator that has both unstandardized and 

standardized values (Kock, 2023b). Logistic regression is normally used to convert an 

endogenous variable on a non-ratio scale (e.g., dichotomous) into a variable reflecting 

probabilities. You need to choose the variable to be converted, which should be an endogenous 

variable, and its predictors. The new logistic regression variable is meant to be used as a 

replacement for the endogenous variable on which it is based. Two algorithms are available: 

probit and logit. The former is recommended for dichotomous variables; the latter for non-ratio 

variables where the number of different values (a.k.a. “distinct observations”) is greater than 2 

but still significantly smaller than the sample size; e.g., 10 different values over a sample size of 

100. The unstandardized values of a logistic regression variable are probabilities; going from 0 to 

1. Since a logistic regression variable can be severely collinear with its predictors, you can set a 

local full collinearity VIF cap for the logistic regression variable. Predictor-criterion collinearity, 

or lateral collinearity (Kock & Lynn, 2012), is rarely assessed or controlled in classic logistic 

regression algorithms. 

    Absolute and relative variation measures. You can now view the number of different values 

(a.k.a. “distinct observations”) for all indicators and latent variables, as well as the ratio between 

the number of different values and sample size. The first is an absolute and the second a relative 

variation measure. These are available under the menu options “View or save correlations and 

descriptive statistics for indicators” and “View latent variable coefficients”, respectively. These 

measures can help inform decisions about whether to use logistic regression, particularly in 

connection with endogenous latent variables. If the number of different values is significantly 

smaller than the sample size (e.g., 10 different values over a sample size of 100) for an 

endogenous latent variable, that means that a new logistic regression variable could be created 

and used as a replacement for the endogenous variable. If several predictors are available, the 

new logistic regression variable will incorporate more variation than the endogenous variable on 

which it is based, which will typically be reflected in larger coefficients of association (e.g., path 

coefficients) when the logistic regression variable is used in the model. 

    Graphs for full latent growth coefficients. You can now view several graphs for each of the 

full latent growth coefficients (Kock, 2020a) provided under the menu option “Explore full latent 

growth”. Full latent growth coefficients have a number of applications, such as: moderating 

effects analyses, nonlinearity tests, multi-group and measurement invariance tests, and the 

assessment of moderated mediation effects (Kock, 2021c). Each of the graphs is made up of 

several plots, which refer to changes in the coefficients selected (e.g., path coefficients) for the 

relationship between the variables shown in the X and Y axes, as the latent growth variable goes 
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from low to high. The following graph menu options are available: “Full sample splits 

(megaphones)”, “Partial sub-samples splits (megaphones)”, “Full sample splits (bars)”, “Partial 

sub-samples splits (bars)”, “Full sample splits (lines)”, and “Partial sub-samples splits (lines)”. 

    HTMT2 ratios. The sub-option “'Discriminant validity coefficients (extended set)”, under the 

menu option “Explore additional coefficients and indices”, now allows you to inspect the newest 

version of the set of heterotrait-monotrait (HTMT) ratios calculated by the software. These have 

been dubbed HTMT2 ratios. The HTMT and HTMT2 ratios have been proposed for discriminant 

validity assessment, particularly in the context of composite-based SEM via classic PLS 

algorithms; as opposed to factor-based SEM via modern algorithms that estimate factors (which 

have been available from this software for quite some time now). Discriminant validity is a 

measure of the quality of a measurement instrument; the instrument itself is typically a set of 

question-statements. A measurement instrument has good discriminant validity if the question-

statements (or other measures) associated with each latent variable are not confused by the 

respondents, in terms of their meaning, with the question-statements associated with other latent 

variables. 

    Incremental interface improvement. This is conducted in each new version of the software. 

At several points the code has been modified so that the user interface experiences are improved. 

This has led in several cases to what appears to be a smoother flow through the several steps and 

procedures guided by the user interface. Several elements of the graphical user interface, such as 

screens and warning messages, have been optimized so that users can perform SEM analysis 

tasks with only a few clicks – and in a straightforward fashion. Nevertheless, care is always 

taken to ensure that the user interfaces do not change too much, otherwise users would have to 

re-learn how to use the interface whenever a new version is released. 

    Incremental code optimization. This is also conducted in each new version of the software. 

At several points the code has been optimized for speed, stability, and coefficient estimation 

precision. In some cases, the optimization has led to lesser propagation of sampling error, 

making the software reach accurate results at lower sample sizes – that is, increasing the 

statistical efficiency of the software. These incremental code optimization changes have led to 

incremental gains in speed even as new features have been added. More often than not, new 

features require additional computational steps and often complex calculations, mostly to 

generate internal checks and coefficients that were not available before.  
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A.4. Note regarding features 

    The vast majority of the features implemented by the software have been extensively vetted 

by a variety of researchers, many of whom have published studies employing the software in 

highly selective publication outlets. Having said that, it should be also noted that some of the 

features provided by the software are still at an experimental stage, and may change in the future 

as more tests are conducted. Normally this is indicated in this user manual whenever it is the 

case. 

    Other novel features of this software may prove useful for applications different from the ones 

they were originally intended for. For example, an extensive set of causality assessment 

coefficients is provided by the software (Kock, 2022b). Yet, the topic of causality assessment 

in the context of SEM is controversial (Kock, 2015e; Kock & Gaskins, 2016; Pearl, 2009). A 

causality assessment coefficient that is provided to inform the user of the possibility of a reverse 

link may prove in the future to be useful to identify a specific type of bias due to measurement 

error. 

    Finally, while this software aims at providing a wide range of features and outputs, the 

complexity inherent in SEM analyses and their dependence on theory that is constantly being 

refined would tend to make strong and sweeping claims regarding accuracy and statistical power 

likely to be proven exaggerated. 

    Researchers analyzing empirical data typically do not know the underlying distributions of 

their data and of error terms. Data analysis software tools help researchers uncover 

characteristics of those distributions, with incomplete information. Given this, it seems 

reasonable to conclude that all SEM algorithms and software tools that implement these 

algorithms have limitations in their accuracy, avoidance of false positives, and statistical power 

(i.e., avoidance of false negatives). 

    Accuracy and statistical power seem to suffer particularly when very small samples and 

deviations from normality are observed in the context of small effect sizes (Kock & Hadaya, 

2018). Some exaggerated claims about PLS-based SEM’s performance under these conditions 

have opened a door for criticism that would otherwise have been tightly closed. For example, 

Goodhue et al.’s (2012) extensive analysis of various SEM algorithms illustrates related 

limitations, although its negative results may have been exacerbated by the fairly low path 

coefficients that they used for small and medium effect sizes. Those path coefficients were based 

on effect sizes that were calculated using the stepwise regression procedure proposed by Cohen 

(1988) for the calculation of f-squared coefficients, which is generally not compatible with PLS-

based SEM algorithms (Kock, 2014a). This theme is further explored later in this user manual. 

    This software attempts to ameliorate this situation in connection with accuracy and statistical 

power by providing an extensive set of features and outputs that can be used by researchers to 

reveal as many aspects of the underlying relationships as possible. 

    Some of the features provided are specifically aimed at increasing accuracy and statistical 

power. For example, jackknifing, one of the resampling methods provided, tends to generate 

relatively low standard errors, more in line with the true values, with small samples and medium 

to high effect sizes. This could increase statistical power with small samples and medium to high 

effect sizes, making the use of jackknifing more appropriate than bootstrapping in these cases. 

The same may be true for the “stable” methods, particularly the “Stable3” method (Kock, 

2018b). In fact, Monte Carlo simulations suggest that the “stable” methods perform better than 

jackknifing and other resampling methods in this respect (Kock, 2018b). 



WarpPLS User Manual: Version 8.0 

 12 

    This software’s extensive range of features may also help further research on SEM methods in 

general.  
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B. The main window 

    Prior to displaying the software’s main window, a command prompt window may be shown 

and kept open for the duration of the SEM analysis session. Whether this window is shown 

or not depends on the operating system being used and its settings. If it is not shown, that is not a 

problem. 

    However, do not try to close this command prompt window if it is shown, because it will list 

warnings and error messages that will likely be very useful in troubleshooting. Moreover, those 

warnings and error messages will indicate where in the source code they are happening, which 

will help the software developer correct any possible problems in future versions of the software. 

    In very slow computers, with limited computing power, only the command prompt window 

may be displayed for as long as a few minutes. The reason for this is that the computer needs to 

load a large runtime module prior to actually running this software. Users should not try to do 

anything during this time, as that will only delay the launch of the software’s main window.  
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B.1. The SEM analysis steps 

    The software’s main window (see Figure B.1) is where the SEM analysis starts. The top-left 

part of the main window contains a brief description of the five steps through which the SEM 

analysis takes place. The steps are executed by pressing each of the push buttons on the top-right 

part of the window. Not all menu options and push buttons become available right away. Menu 

options and push buttons become available as the analysis progresses. 
 

Figure B.1. The main window showing the steps (after a complete analysis was conducted) 

 

 
 

    The steps must be carried out in the proper sequence. For example, Step 5, which is to perform 

the SEM analysis and view the results, cannot be carried out before Step 1 takes place, which is 

to open or create a project file to save your work. This is the main reason why steps have their 

push buttons grayed out and deactivated until it is time for the corresponding steps to be carried 

out. 

    The bottom-left part of the main window shows the status of the SEM analysis; after each step 

in the SEM analysis is completed, this status window is updated. A miniature version of the SEM 

model graph is shown at the bottom-right part of the main window. This miniature version is 

displayed without results after Step 4 is completed. After Step 5 is completed, this miniature 

version is displayed with results. 

    The following menu options are available under “Project”: “Open or create project (Step 1)”, 

“Save project”, “Save project as …”, and “Exit”. The “Open or create project (Step 1)” option 

allows users to open or create a project file, providing an alternative path for executing Step 1. 

Through the “Save project” option you can save the project file that has just been created or that 

has been created before and is currently open. To open an existing project or create a new project 

you need to execute Step 1, by pressing the “Proceed to Step 1” push button. The “Save project 

as …” option allows you to save an existing project with a different name and in a different 

folder from ones for the project that is currently open or has just been created. This option is 
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useful in the SEM analysis of multiple models where each model is a small variation of the 

previous one. Finally, the “Exit” option ends the software session. If your project has not been 

saved, and you choose the “Exit” option, the software will ask you if you want to save your 

project before exiting. In some cases, you will not want to save your project before exiting, 

which is why a project is not automatically saved after each step is completed. For example, you 

may want to open an existing project, change a few things and then run a SEM analysis, and then 

discard that project. You can do this by simply not saving the project before exiting. 

    Initially, before Step 5 is completed, the menu option “Explore” becomes available from the 

main window with limited functionality available under it; it only allows users to explore 

statistical power and minimum sample size requirements. Extra functionality under “Explore” 

becomes available after Step 5 is completed. After Step 3 is completed, whereby the data used in 

the SEM analysis is pre-processed, three sets of menu options become available from the main 

window: “Data”, “Modify”, and “Settings”. 

    The “Data” menu options refer primarily to data viewing and saving tasks. These menu 

options allow you to view or save data and various statistics, mostly descriptive statistics, into 

tab-delimited .txt files. The “tab-delimited .txt file” is the general file format used by the 

software to save most of the files containing analysis and summarization results. These files can 

be opened and edited using Excel, Notepad, and other similar spreadsheet or text editing 

software. These menu options are discussed in more detail later. 

    The “Modify” menu options refer primarily to data modification tasks. These menu options 

allow you to add new data labels and raw data to your dataset, redo missing data imputation, as 

well as add one or more latent variable scores (a.k.a. factor scores) to the dataset as new 

standardized indicators. Also available is the option of adding all latent variable scores at once to 

the dataset as new standardized indicators. Data labels can be shown on graphs as text next to 

data points, or as legends for data points using different markers. These menu options are 

discussed in more detail later. 

    The “Explore” menu options give you access to a variety of advanced ancillary analysis 

features. These allow you to estimate statistical power and minimum sample size requirements 

(Kock, 2023c), view T ratios and confidence intervals for various coefficients, estimate complex 

probabilities via conditional probabilistic queries, conduct full latent growth analyses (Hubona & 

Belkhamza, 2021; Kock, 2020a), conduct multi-group and measurement invariance analyses, 

create analytic composites (Kock, 2021a; Kock et al., 2018) and instrumental variables that can 

be used to address endogeneity (Kock, 2022a) and analyze reciprocal relationships (Kock, 

2023a), perform numeric-to-categorical and categorical-to-numeric conversions, view Dijkstra's 

consistent PLS outputs, create logistic regression variables (Kock, 2023b), view fit indices 

comparing indicator correlation matrices (shown together with other classic model fit and quality 

indices), and view new reliability measures generated in the context of factor-based PLS 

analyses. These menu options are discussed in more detail later. 

    The “Settings” menu options refer primarily to the settings used in an SEM analysis. You can 

view or change general SEM analysis settings through the “Settings” menu options. Here you 

can select the analysis algorithms used in the SEM analysis, the resampling method used to 

calculate standard errors and P values, as well as other elements that will define how the SEM 

analysis will be conducted. These menu options are discussed in more detail later. 

    The “Help” menu options give you access to help resources. There are several help menu 

options available on the main window, as well as on several other windows displayed by the 

software. The “Open User Manual file (PDF)” option opens this document as a PDF file from a 



WarpPLS User Manual: Version 8.0 

 16 

Web location. The “Open Web page with video for this window” option opens a Web page 

with a video clip that is context-specific, in this case specific to the main window. The “Open 

Web page with links to various videos” option is not context-specific, and opens a Web page 

with links to various video clips. The “Open Web page with WarpPLS blog” option opens a 

Web page with the WarpPLS blog. Similar help options are available from several other 

windows in this software.  
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B.2. Data 

    The “Data” menu options allow you to view or save data and various statistics, mostly 

descriptive statistics (see Figure B.2). These menu options are discussed individually below. 

Some of them are discussed in more detail later in this document. 
 

Figure B.2. Data menu options 

 

 
 

    The “View or save correlations and descriptive statistics for indicators” option allows you 

to view or save general descriptive statistics about the data. These include the following, which 

are shown at the bottom of the table that is displayed through this option: numbers of different 

values (a.k.a. “distinct observations”), the ratios between the numbers of different values and 

sample size, means, standard deviations, minimum and maximum values, medians, modes, 

skewness and excess kurtosis coefficients, results of unimodality and normality tests, and 

histograms. The unimodality tests for which results are provided are the Rohatgi- Székely test 

(Rohatgi & Székely, 1989) and the Klaassen-Mokveld-van Es test (Klaassen et al., 2000). The 

normality tests for which results are provided are the classic Jarque-Bera test (Jarque & Bera, 

1980; Bera & Jarque, 1981) and Gel & Gastwirth’s (2008) robust modification of this test. Since 

these tests are applied to individual indicators, they can be seen as “univariate” or “bivariate” 

unimodality and normality tests. 

    These descriptive statistics are complemented by the option “View or save P values for 

indicator correlations”. This option may be useful in the identification of candidate indicators 

for latent variables through the anchor variable procedure discussed by Kock & Verville (2012). 

This can be done prior to defining the variables and links in a model. This can also be done after 

the model is defined and an analysis is conducted, particularly in cases where the results suggest 

outer model misspecification. Examples of outer model misspecification are instances in which 

indicators are mistakenly included in the model by being assigned to certain latent variables, and 

instances in which indicators are assigned to the wrong latent variables (Kock & Lynn, 2012; 

Kock & Verville, 2012). 

    The “View or save raw indicator data” option allows you to view or save the raw data used 

in the analysis. This is a useful feature for geographically distributed researchers conducting 

collaborative analyses. With it, those researchers do not have to share the raw data as a separate 

file, as that data is already part of the project file. That data can be viewed and easily replicated, 

if this is needed, through this option. 



WarpPLS User Manual: Version 8.0 

 18 

    Two menu options allow you to view or save unstandardized pre-processed indicator data. 

This pre-processed data is not the same as the raw data, as it has already been through the 

automated missing value correction procedure in Step 3. The options that allow you to view or 

save unstandardized pre-processed indicator data are: “View or save unstandardized pre-

processed indicator data” and “View or save unstandardized ranked pre-processed 

indicator data”. The latter option refers to ranked data. 

    When data is ranked, typically the value distances that typify outliers in data on ratio scales, 

whether standardized or unstandardized, are significantly reduced. This effectively eliminates 

outliers from the data, without any decrease in sample size. Often some information is lost due to 

ranking – e.g., the distances among data points based on answers on ratio scales. Ranked data 

can be saved and then selectively read into the project file (e.g., only one or a few columns) and 

used in only one or a few latent variables, if it appears that relationships involving those 

variables are being significantly and pathologically influenced by the existence of outliers. 

    Two related menu options allow you to view or save standardized pre-processed indicator 

data: “View or save standardized pre-processed indicator data” and “View or save 

standardized ranked pre-processed indicator data”. The latter option ranks the data prior to 

standardizing it. Ranking often has little effect on ordinal data (e.g., data on Likert-type scales), 

and a major impact on ratio data (e.g., yearly income). 

    The options that refer to unstandardized data allow you to view or save pre-processed data 

prior to standardization. The options that refer to standardized data allow you to view or save 

pre-processed data after standardization; that is, after all indicators have been transformed in 

such a way that they have a mean of zero and a standard deviation of one. 

    The “View or save data labels” option allows you to view or save data labels. These are text 

identifiers that are entered by you separately, through one of the “Modify” menu options. Like 

the original numeric dataset, the data labels are stored in a table. Each column of this table refers 

to one data label, and each row to the corresponding row of the original numeric dataset. Data 

labels can later be shown on graphs, either next to each data point that they refer to, or as part of 

a graph’s legend. 

    The “Save grouped descriptive statistics” option is a special option that allows you to save 

descriptive statistics (means and standard deviations) organized by groups defined based on 

certain parameters. This option is discussed in more detail at the end of this section. This could 

be considered a “legacy” option, which has been useful in the past but whose usefulness 

decreased as newer versions of this software have been released. As of this writing, other more 

advanced features of the software largely obviate the need for the functionality offered through 

this option. 

    The “View or save latent variable (a.k.a. factor) scores” option allows you to view or save 

the latent variable scores generated by the software. There is another option that allows you to 

save latent variable scores, available as a menu option on the window used to view and save 

model analysis results; which becomes available later, after Step 5 is completed. These two 

options return the same latent variable scores in most cases. 

    The exception to the general rule above is a situation in which you specified a range restriction 

for your analysis. In this case, only the latter option will return the range-restricted latent variable 

scores. These latent variable scores will generally have a smaller number of rows than the 

original dataset (because they are range-restricted), and thus will not be exactly matched to the 

original dataset.  
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B.2.1. Grouped descriptive statistics 

    When the “Save grouped descriptive statistics” option is selected, a data entry window is 

displayed (see Figure B.2.1.1). There you can choose a grouping variable, number of groups, and 

the variables to be grouped. This option is useful if one wants to conduct a comparison of means 

analysis using the software, where one variable (the grouping variable) is the predictor, and one 

or more variables are the criteria (the variables to be grouped). 
 

Figure B.2.1.1. Save grouped descriptive statistics window 

 

 
 

Figure B.2.1.2. Grouped descriptive statistics bar chart 

 

 
 

    Figure B.2.1.2 shows the grouped statistics data saved through the window shown in Figure 

B.2.1.1. The tab-delimited .txt file was opened with a spreadsheet program, and contained the 

data on the left part of the figure. 

    The data on the left part of Figure B.2.1.2 was organized as shown above the bar chart; next 

the bar chart was created using the spreadsheet program’s charting feature. If a simple 
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comparison of means analysis using this software (see, e.g., Kock, 2013) had been conducted in 

which the grouping variable (in this case, an indicator called “ECU1”) was the predictor, and the 

criterion was the indicator called “Effe1”, those two variables would have been connected 

through a path in a simple path model with only one path. Assuming that the path coefficient was 

statistically significant, the bar chart displayed in Figure B.2.1.2, or a similar bar chart, could be 

added to a report describing the analysis. 

    Some may think that it is overkill to conduct a comparison of means analysis using a SEM 

software package such as this, but there are advantages in doing so (Kock, 2013). One of those 

advantages is that this software calculates P values using a nonparametric class of estimation 

techniques, namely resampling and “stable” estimation techniques. (Resampling techniques are 

sometimes referred to as bootstrapping techniques, which may lead to confusion since 

bootstrapping is also the name of a type of resampling technique.) Nonparametric estimation 

techniques do not require the data to be normally distributed, which is a requirement of other 

comparison of means techniques (e.g., ANOVA). 

    Another advantage of conducting a comparison of means analysis using this software is that 

the analysis can be significantly more elaborate than with traditional comparison of means 

methods, even nonparametric ones. For example, the analysis may include control variables (or 

covariates), which would make it equivalent to an ANCOVA test. Finally, the comparison of 

means analysis may include latent variables, as either predictors or criteria (see, e.g., Kock & 

Chatelain-Jardón, 2011). This is not usually possible with ANOVA or commonly used 

nonparametric comparison of means tests (e.g., the Mann-Whitney U test). 

    An even more extreme situation is that discussed by Kock (2013) where data on only “one 

group and one condition” is available. This situation is illustrated through a scenario in which a 

researcher obtains empirical data by asking questions to gauge the effect of a technology on task 

performance, but does not obtain data on the extent to which the technology is used. Because of 

this, the researcher ends up with only one column of data to analyze. 

    Two other scenarios are also discussed by Kock (2013). These two scenarios are discussed to 

set the stage for the discussion of the “one group and one condition” scenario. The first is a 

typical study scenario in which the researcher measures the degree to which the technology is 

used, or the degree to which specific features of the technology are used, as well as team 

performance and/or related variables expected to be influenced by technology use. 

    In the second scenario the researcher does not have data on the extent to which the technology 

is used, but has data related to team performance and/or other variables expected to be influenced 

by technology use before and after the technology is introduced. This is a longitudinal data 

collection scenario for which a comparison of means test could be used. Data analyses for all 

three scenarios are discussed by Kock (2013) based on this software, showing the versatility of 

the software. The main reason for this versatility is that most of the data analysis methods used in 

behavioral research can be conceptually seen as special cases of SEM.  
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B.3. Modify 

    The “Modify” menu options allow you to add new data labels and raw data to your dataset, 

redo missing data imputation, as well as add one or more latent variable scores (a.k.a. factor 

scores) to the dataset as new standardized indicators (see Figure B.3). Also available is the 

option of adding all latent variable scores at once to the dataset as new standardized indicators. 

Data labels can be shown on graphs as text next to data points, or as legends for data points using 

different markers. These menu options are discussed individually below. Some of them are 

discussed in more detail later in this document. 
 

Figure B.3. Modify menu options 

 

 
 

    The menu options “Add data labels from clipboard” and “Add data labels from file” allow 

you to add data labels into the project file. Data labels are text identifiers that are entered by you 

through these options, one column at a time. Like the original numeric dataset, the data labels are 

stored in a table. Each column of this table refers to one data label, and each row to the 

corresponding row of the original numeric dataset. Data labels can later be shown on graphs, 

either next to each data point that they refer to, or as part of the legend for a graph. 

    Data labels can be read from the clipboard or from a file, but only one column of labels can 

be read at a time. Data label cells cannot be empty, contain spaces, or contain only numbers; 

they must be combinations of letters, or of letters and numbers. Valid examples are the 

following: “Age>17”, “Y2001”, “AFR”, and “HighSuccess”. These would normally be entered 

without the quotation marks, which are used here only for clarity. Some invalid examples: “123”, 

“Age > 17”, and “Y 2001”. 

    Through the menu options “Add raw data from clipboard” and “Add raw data from file” 

users can add new data from the clipboard or from a file. This data then becomes available for 

use in models, without users having to go back to Step 2. These options relieve users from 

having to go through nearly all of the steps of a SEM analysis if they find out that they need 

more data after they complete Step 5 of the analysis. Past experience supporting users suggests 

that this is a common occurrence. These options employ the same data checks and data 

correction algorithms as in Step 2; please refer to the section describing that step for more 

details. 

    The option “Redo missing data imputation (via data pre-processing)” allows users to redo 

the missing data imputation process after choosing a method through the “View or change 

missing data imputation settings” option, which is available under the “Settings” menu 

options. The following missing data imputation methods are available: Arithmetic Mean 

Imputation (the software’s default), Multiple Regression Imputation, Hierarchical Regression 

Imputation, Stochastic Multiple Regression Imputation, and Stochastic Hierarchical Regression 
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Imputation. Kock (2014c) and Kock (2018a) provide a detailed discussion of these methods and 

of a Monte Carlo simulation that assesses the methods’ relative performances. 

    Latent variable scores can be easily added to the dataset via the options “Add one or more 

latent variable (a.k.a. factor) scores as new standardized indicators” and “Add all latent 

variable (a.k.a. factor) scores as new standardized indicators”. These options allow users, 

after Step 5 is completed, to add one or more latent variables to the model as new standardized 

indicators, and also to add all latent variables as new indicators. Adding one or more latent 

variables at a time may be advisable in certain cases; for example, in hierarchical analyses using 

selected latent variables as indicators of second, third etc. order latent variables at each level. In 

such cases, adding all latent variables at once may soon clutter the set of indicators available to 

be used in the SEM model.  
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B.3.1. Data labels 

    Data labels can be added through the menu options “Add data labels from clipboard” and 

“Add data labels from file” (see Figure B.3.1). Data labels are text identifiers that are entered 

by you through these options, one column at a time. Like the original numeric dataset, the data 

labels are stored in a table. Each column of this table refers to one data label variable, and each 

row to the corresponding row of the original numeric dataset. Data labels can later be shown on 

graphs, either next to each data point that they refer to, or as part of the legend for a graph. Once 

they have been added, data labels can be viewed or saved using the “View or save data labels” 

option. 
 

Figure B.3.1. Add data labels from file window 

 

 
 

    While data labels can be read from the clipboard or from a file, only one column of labels 

can be read at a time. Data label cells cannot be empty, contain spaces, or contain only 

numbers; they must be combinations of letters, or of letters and numbers. Valid examples are 

the following: “Age>17”, “Y2001”, “AFR”, and “HighSuccess”. These would normally be 

entered without the quotation marks, which are used here only for clarity. Some invalid examples 

are: “123”, “Age > 17”, and “Y 2001”.  
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B.4. Explore 

    The “Explore” menu options allow you to estimate statistical power and minimum sample 

size requirements (Kock, 2023c), view T ratios and confidence intervals for various coefficients, 

estimate complex probabilities via conditional probabilistic queries, conduct full latent growth 

analyses (Hubona & Belkhamza, 2021; Kock, 2020a), conduct multi-group and measurement 

invariance analyses, create analytic composites (Kock, 2021a; Kock et al., 2018) and 

instrumental variables that can be used to address endogeneity (Kock, 2022a) and analyze 

reciprocal relationships (Kock, 2023a), perform numeric-to-categorical and categorical-to-

numeric conversions, view Dijkstra's consistent PLS outputs, view fit indices comparing 

indicator correlation matrices (shown together with other classic model fit and quality indices), 

and view new reliability measures generated in the context of factor-based PLS analyses. These 

menu options are discussed individually below. 
 

Figure B.4. Explore menu options 

 

 
 

    Initially, before Step 5 is completed, the menu option “Explore” becomes available from the 

main window with limited functionality available under it. It only allows users to explore 

statistical power and minimum sample size requirements, through the menu option “Explore 

statistical power and minimum sample size requirements”. Extra functionality under 

“Explore”, via the other menu options, becomes available after Step 5 is completed.  
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B.4.1. Power and sample size requirements 

    The menu option “Explore statistical power and minimum sample size requirements” 

allows you to obtain estimates of the minimum required sample sizes for empirical studies based 

on the following model elements: the minimum absolute significant path coefficient in the model 

(e.g., 0.21), the significance level used for hypothesis testing (e.g., 0.05), and the power level 

required (e.g., 0.80). Figure B.4.1 illustrates this option. Two methods are used to estimate 

minimum required sample sizes, the inverse square root and gamma-exponential methods (Kock, 

2023c; Kock & Hadaya, 2018).  
 

Figure B.4.1. Explore statistical power and minimum sample size requirements 

 

 
 

    These methods simulate Monte Carlo experiments, and thus produce estimates that are in line 

with the estimates that would be produced through the Monte Carlo method. The inverse square 

root method tends to slightly overestimate the minimum required sample size, while the gamma-

exponential method provides a more precise estimate. Given this, users are advised to report both 

estimates, and try to meet the estimate generated by the more conservative of the two methods 

(i.e., the inverse square root method), which will ensure that the power level achieved by their 

study will be above the one sought. 

    Normally researchers have expectations regarding the results that they should obtain from 

their empirical studies, expectations that are based on extant theories that they may be 

empirically testing, as well as past empirical studies. If that is not the case, those researchers may 

find the default values provided by this software to be useful. The minimum required sample size 

estimates given by default by this software are 160 and 146.  

    These estimates are generated based on the inverse square root and gamma-exponential 

methods, respectively, based on certain default values for model elements: 0.197 for minimum 

absolute significant path coefficient in the model, 0.05 for the significance level used, and 0.80 

the power level required. In line with these estimates, the following general rule of thumb is 

recommended. Researchers who are uncertain about the results they should expect from their 
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studies should aim for sample sizes of 160 or above, and no less than 146. The rationales for this 

general rule of thumb, as well as for the default values underlying it, are discussed in some detail 

by Kock & Hadaya (2018). 

    The simulation work discussed by Kock & Hadaya (2018) has led to a conclusion that often 

surprises researchers: the minimum required sample size does not depend on a model’s 

complexity, but on the minimum absolute significant path coefficient in the model. While 

typically complex models do indeed have weaker path coefficients, a very simple model with 

only two connected latent variables and a true path coefficient of .100 will require a sample size 

of around 600 for a statistical power level of 80 percent to be achieved. 

    Note that the focus of this work is on path coefficients because they are usually associated 

with hypothesis testing, and thus type I and II errors – false positives and false negatives, 

respectively. Statistical power is the probability that a type II error will be avoided, for each path 

coefficient, which is why the weakest path coefficient is the one that drives the power of a 

method used to analyze an entire model with multiple path coefficients.  
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B.4.2. T ratios and confidence intervals 

    While P values are widely used in PLS-based SEM, as well as in SEM in general, the 

statistical significances of path coefficients, weights and loadings can also be assessed 

employing T ratios and/or confidence intervals (Kock, 2016b). These can be obtained through 

the menu option “Explore T ratios and confidence intervals”, which allows you to set the 

confidence level to be used (see Figure B.4.2). 
 

Figure B.4.2. Explore T ratios and confidence intervals 

 

 
 

    Generally speaking, the confidence level used should be the complement of the significance 

level used (i.e., 1 minus the significance level used). For example, if the significance level used 

is 0.05, then the confidence level used should be set at 0.95 (which is also the software’s 

default). Critical T ratios are provided by the software based on the confidence level selected. 

The confidence intervals are also affected by the confidence level selected. Kock (2016b) 

discusses, with examples, how T ratios and confidence intervals can be used for hypothesis 

testing, either in place of P values or in conjunction with those values.  
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B.4.3. Conditional probabilistic queries 

    If an analysis suggests that two variables are causally linked, yielding a path coefficient of 

0.25 for example, this essentially means in probabilistic terms that an increase in the predictor 

variable leads to an increase in the conditional probability that the criterion variable will be 

above a certain value. Yet, conditional probabilities cannot be directly estimated based on path 

coefficients; and those probabilities may be of interest to both researchers and practitioners. By 

using the “Explore conditional probabilistic queries” menu option, users of this software can 

estimate conditional probabilities via queries including combinations of latent variables, 

unstandardized indicators, standardized indicators, relational operators (e.g., > and <=), and 

logical operators (e.g., & and |). Figure B.4.3 illustrates this option. 
 

Figure B.4.3. Explore conditional probabilistic queries 

 

 
 

    An example of conditional probabilistic query would be the following. What is the probability 

that: lv:Success > 0, if lv:ECollab > 1? Here the “lv” terms indicate that we are referring to the 

latent variables “Success” (level of success in a team project) and “ECollab” (level of use of an 

electronic collaboration technology in the project). Since the latent variables are standardized, 

this query translates to: What is the probability that a team will have an above average level of 

success in a project, if their level of use of the electronic collaboration technology is high?  
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B.4.4. Full latent growth 

    Sometimes the actual inclusion of moderating variables and corresponding links in a model 

leads to problems; e.g., increases in collinearity levels, and the emergence of instances of 

Simpson’s paradox (Kock, 2015e; Kock & Gaskins, 2016). By using the menu option “Explore 

full latent growth” users can completely avoid these problems (see Figure B.4.4). This menu 

option allows you to estimate the effects of a latent variable or indicator on all of the links in a 

model (all at once), without actually including any links between the variable and other 

variables in the model (Kock, 2020a). Moreover, growth in coefficients associated with links 

among different latent variables and between a latent variable and its indicators, can be 

estimated; allowing for measurement invariance tests applied to loadings and/or weights. Finally, 

growth coefficients can be used in the assessment of moderated mediation effects (Hubona & 

Belkhamza, 2021; Kock, 2020a; 2021c). 
 

Figure B.4.4. Explore full latent growth 

 

 
 

    A full latent growth analysis could be seen as a comprehensive analysis of moderating effects 

where the moderating variable is “latent”, in the sense that it does not “disrupt” the model in any 

way (Hubona & Belkhamza, 2021; Kock, 2020a). This is conceptually analogous to a multi-

group analysis (see, e.g., Kock, 2014a). Nevertheless, full latent growth coefficients have a 

number of applications, such as: moderating effects analyses, nonlinearity tests, multi-group and 

measurement invariance tests, and the assessment of moderated mediation effects (Kock, 2021c). 

    Two degrees of latent growth are provided through this menu option: first and second degree 

growth. An instance of second degree growth is equivalent to a double moderation, again with 

the moderating variable being “latent” (or “hidden” from the other variables in the model). If a 

link includes the latent growth variable itself, then the corresponding latent growth coefficient, if 

significant, suggests the existence of a nonlinear relationship (which is also equivalent to “self-

moderation”; for a discussion of this equivalence in an action research context see: Kock et al., 

2017). In such an instance (i.e., when the link includes the latent growth variable itself) the level 
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of nonlinearity is likely “Warp2” if it is associated with significant first degree growth; and 

likely “Warp3” if it is associated with significant second degree growth. 

    You can view several graphs for each of the full latent growth coefficients (Kock, 2020a) by 

simply clicking on a full latent growth coefficient. Each of the graphs is made up of several 

plots, which refer to changes in the coefficients selected (e.g., path coefficients) for the 

relationship between the variables shown in the X and Y axes, as the latent growth variable goes 

from low to high. The following graph menu options are available: “Full sample splits 

(megaphones)”, “Partial sub-samples splits (megaphones)”, “Full sample splits (bars)”, 

“Partial sub-samples splits (bars)”, “Full sample splits (lines)”, and “Partial sub-samples 

splits (lines)”. Each of these six graph types shows multiple plots for low and high values of the 

latent growth variable. 

    The “Full sample splits (megaphones)” and “Partial sub-samples splits (megaphones)” 

graphs show plots with full sample and partial sub-sample splits with megaphone line patterns 

(to borrow a term from graphical analysis in finance), where best-fitting lines are scaled to start 

at zero. The “Full sample splits (bars)” and “Partial sub-samples splits (bars)” graphs show 

plots with full sample and partial sub-sample splits with bar charts, where the sizes of the bars 

reflect the gradient of the best-fitting lines (i.e., the path coefficients). Finally, the “Full sample 

splits (lines)” and “Partial sub-samples splits (lines)” graphs show plots with full sample and 

partial sub-sample splits with best-fitting lines (not scaled to start at zero). 

    Plots employing full sample splits are similar to those provided elsewhere in the software for 

2D moderating effects graphs. For example, if a full sample split is indicated as 0.14, the number 

of data points to the left is 14 percent of the sample, and to the right it is 86 percent. These refer 

to the “low” and “high” values of the full latent growth variable. Plots employing partial sub-

samples splits segment a sub-sample around the split into “low” and “high” values, so they 

provide a more localized picture with respect to latent growth effects. These sub-samples are 

approximately of the same size, and include points around the split. For example, if a split is 

indicated as 0.14, the corresponding plot will be based on 14 percent of the sample to the left of 

the split, and 14 percent of the sample to the right of the split. These plots are discussed further at 

the end of this user manual, in a sub-section under the section comprising concluding remarks 

and further elaborations on additional issues.  
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B.4.5. Multi-group analyses 

    The menu option “Explore multi-group analyses” allows you to conduct analyses where the 

data is segmented in various groups, all possible combinations of pairs of groups are generated, 

and each pair of groups is compared (see Figure B.4.5). In multi-group analyses normally path 

coefficients are compared (Kock, 2014a). The grouping variables can be unstandardized 

indicators, standardized indicators, and labels. The sub-options available for group pair 

comparison refer to the following methods: constrained latent growth, Satterthwaite, and pooled 

standard error. 
 

Figure B.4.5. Explore multi-group analyses 

 

 
 

    The constrained latent growth method is essentially the same method as that employed in a 

full latent growth analysis (Hubona & Belkhamza, 2021; Kock, 2020a), with the difference that 

here it is constrained to the sub-sample formed by the two groups being compared. The 

Satterthwaite and pooled standard error are classic methods that are widely used for multi-group 

analyses (for a detailed discussion of these methods, see: Kock, 2014a). One of the advantages of 

the constrained latent growth method is that the sub-sample it analyzes is larger than the sub-

samples analyzed by the Satterthwaite and pooled standard error methods. In most cases, multi-

group analyses can be more easily and comprehensively conducted through a full latent growth 

analysis (Hubona & Belkhamza, 2021; Kock, 2020a).  
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B.4.6. Measurement invariance 

    The menu option “Explore measurement invariance” allows you to conduct analyses where 

the data is segmented in various groups, all possible combinations of pairs of groups are 

generated, and each pair of groups is compared (see Figure B.4.6). These analyses are similar, in 

several respects, to those conducted in multi-group analyses. However, while in multi-group 

analyses normally path coefficients are compared, in measurement invariance assessment the 

foci of comparison are loadings and/or weights (Kock, 2014a). 
 

Figure B.4.6. Explore measurement invariance 

 

 
 

    As with multi-group analyses, the grouping variables can be unstandardized indicators, 

standardized indicators, and labels. The sub-options available for group pair comparison refer 

to the following methods: constrained latent growth, Satterthwaite, and pooled standard error. 

The constrained latent growth method is essentially the same method as that employed in a full 

latent growth analysis (Hubona & Belkhamza, 2021; Kock, 2020a), with the difference that here 

it is constrained to the sub-sample formed by the two groups being compared. 

    The Satterthwaite and pooled standard error are classic methods that are widely used for 

measurement invariance testing (for a detailed discussion of these methods, see: Kock, 2014a). 

As noted earlier, one of the advantages of the constrained latent growth method is that the sub-

sample it analyzes is larger than the sub-samples analyzed by the Satterthwaite and pooled 

standard error methods. In most cases, measurement invariance assessment can be more easily 

and comprehensively conducted through a full latent growth analysis (Hubona & Belkhamza, 

2021; Kock, 2020a).  
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B.4.7. Analytic composites 

    The menu option “Explore analytic composites and instrumental variables” allows you to 

create analytic composites (see Figure B.4.7). Analytic composites are weighted aggregations 

of indicators where the relative weights are set by you, usually based on one or more existing 

theories or the definition of the analytic composites. Relative weight values from -1 to 1 are 

allowed. 
 

Figure B.4.7. Explore analytic composites 

 

 
 

    For example, an analytic composite may be defined as the aggregation of 10 stock prices 

weighted by values reflecting the relative market capitalization of their respective companies. In 

a case like this it makes no sense to let the software assign weights to indicators. The same is true 

when a construct is defined within the scope of a theory as being an aggregation of, say, 3 

indicators with specific relative weights assigned to them.  

    Here only relative weights matter, because the actual standardized weights will be calculated 

by the software. For instance, in a three-indicator analytic composite, assigning the relative 

weights as 1, 0.5 and 0.25 (each weight being the preceding weight divided by 2) has the same 

effect as assigning them as 0.3, 0.15 and 0.075. 

    Analytic composites may also be used to reduce common structural variation in a model 

(Kock, 2021a) and in what-if analyses (Kock et al., 2018). In what-if analyses, analytic 

composites are designed as replacements for certain latent variables in simulations aimed at 

manipulating correlations with other latent variables to better reflect what would happen under 

certain conditions – e.g., if professional programmers were considered instead of students in 

software development tasks (Kock et al., 2018).  
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B.4.8. Instrumental variables: Endogeneity 

    The menu option “Explore analytic composites and instrumental variables” also allows 

you to create instrumental variables (see Figure B.4.8). Instrumental variables are variables 

that selectively share variation with other variables, and only with those variables. 

Instrumental variables can be used to test and control for endogeneity (Kock, 2022a); a 

situation that occurs when the structural error term for an endogenous variable is correlated with 

one or more of the variable’s predictors. For example, let us consider a simple population model 

(i.e., “true” model) with the following latent variable links: A > B and B > C. 
 

Figure B.4.8. Using instrumental variables to address endogeneity 

 

 
 

    This model presents endogeneity with respect to C, because variation flows from A to C via B, 

leading to a biased estimation of the path for the link B > C via ordinary least squares regression. 

Adding a link from A to C could be argued as “solving the problem”, but in fact it creates an 

even more problematic scenario: the possibility of a type I error, since the link A > C does not 

exist at the population level. A more desirable solution to this problem is to create an 

instrumental variable iC, incorporating only the variation of A that ends up in C and nothing else, 

and revise the model so that it has the following links: A > B, B > C and iC > C. The link iC > C 

can be used to test for endogeneity, via its P value and effect size. This link (i.e., iC > C) can also 

be used to control for endogeneity, thus removing the bias when the path coefficient for the link 

B > C is estimated via ordinary least squares regression. To create instrumental variables so that 

you can test and control for endogeneity you should use the sub-option “Single stochastic 

variation sharing”. The underlying technique, variation sharing, is discussed by Kock & Sexton 

(2017).  
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B.4.9. Instrumental variables: Reciprocity 

    Instrumental variables can also be used to estimate reciprocal relationships (see Figure 

B.4.9). For this, you should use the sub-option “Reciprocal stochastic variation sharing” 

(Kock, 2023a; Morrow & Conger, 2021). A third sub-option, labeled “Instrument variables 

composite”, is available for completeness but is not recommended. (This third sub-option refers 

to an old method used in econometrics to address endogeneity that unfortunately tends to add 

massive collinearity to almost any model.) 
 

Figure B.4.9. Using instrumental variables to estimate reciprocal relationships 

 

 
 

    To illustrate the sub-option “Reciprocal stochastic variation sharing” let us consider a 

population model with the following latent variable links: A > C, B > D, C > D and D > C. To 

test the reciprocal relationship (Morrow & Conger, 2021) between C and D you should first 

control for endogeneity in C and D, due to variation coming from B and A respectively, by 

creating two instrumental variables iC and iD via the sub-option “Single stochastic variation 

sharing” and adding these variables to the model. Next you should create two other instrumental 

variables through the sub-option “Reciprocal stochastic variation sharing”, which we will call 

here iCrD and iDrC, referring to the conceptual reciprocal links C > D and D > C respectively. 

(No links between C and D should be included in the model graph, since reciprocal links cannot 

be directly represented in this version of the software.) 

    The final model, with all the links, would be as follows: A > C, iC > C, B > D, iD > D, iDrC > 

D and iCrD > C. Here the link iDrC > D represents the conceptual link C > D, and can be used to 

test this conceptual link; and the link iCrD > C represents the conceptual link D > C, and can be 

used to test this conceptual link. In this example it is possible that significant collinearity may be 

added to the model – e.g., between iDrC and C, and/or iCrD and D – particularly for reciprocal 

effects of medium to large sizes. Given this, the model should be tested for full collinearity 

(through the inspection of full collinearity variance inflation factors) prior to the inclusion of the 

reciprocal instrumental variables, and only for vertical collinearity (through the inspection of 

block variance inflation factors) after those instrumental variables are included in the model.  
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B.4.10. Categorical-numeric-categorical conversion 

    The menu option “Explore categorical-numeric-categorical conversion” allows you to 

perform categorical-to-numeric and numeric-to-categorical conversions (see Figure B.4.10). In a 

numeric-to-categorical conversion one or more of the following numeric variables are 

converted into a single data label variable: latent variable, standardized indicator, and/or 

unstandardized indicator. This option is useful in multi-group analyses (Kock, 2014a) where the 

investigator wants to employ more than one numeric field for grouping. For example, let us 

assume that the following two unstandardized indicators are available: C, with the values 1 and 0 

referring to individuals from the countries of Brazil and New Zealand; and G, with the values 1 

and 0 referring to females and males. By using a numeric-to-categorical conversion a researcher 

could create a new data label variable to conduct a multi-group analysis based on four groups: 

“C=1G=1” (females from Brazil), “C=1G=0” (males from Brazil), “C=0G=1” (females from 

New Zealand), and “C=0G=0” (males from New Zealand). 
 

Figure B.4.10. Explore categorical-numeric-categorical conversion 

 

 
 

    In a categorical-to-numeric conversion a user can convert a categorical variable, stored as a 

data label variable, into a numeric variable that is then added to the dataset as a new standardized 

indicator. This new variable can subsequently be used as a new indicator of an existing latent 

variable, or as a new latent variable with only one-indicator (i.e., as a structural variable, making 

up the inner model). Three categorical-to-numeric conversion modes are available: anchor-

factorial with fixed variation, anchor-factorial with variation diffusion (Kock, 2020b), and 

anchor-factorial with variation sharing. The following general rules of thumb are recommended 

for the use of these modes.  

    The anchor-factorial with fixed variation mode should be employed when the new variable 

is expected to be included in the model as a new indicator of an existing latent variable; here if 

more than one anchor is chosen, only the anchor with the highest correlation will be used. The 
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anchor-factorial with variation diffusion mode (Kock, 2020b) should be employed when the 

new variable is expected to be included in the model as a control variable; this option may be 

useful in multilevel analyses (Kock, 2020b), as a more sophisticated alternative to the group 

mean variable approach discussed by Kock & Hadaya (2018). The anchor-factorial with 

variation sharing mode should be employed when the new variable is expected to be included 

in the model as a one-indicator latent variable (i.e., as a structural variable with one single 

indicator) that is expected to significantly influence and/or be influenced by other latent variables 

in the model.  
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B.4.11. Consistent PLS outputs 

    The menu option “Explore Dijkstra's consistent PLS outputs” (see Figure B.4.11) allows 

you to obtain key outputs generated based on Dijkstra's consistent PLS (a.k.a. PLSc) technique, 

so named in honor of its developer – Theo K. Dijkstra. These outputs include PLSc reliabilities 

for each latent variable, also referred to as Dijkstra's rho_a's, which appear to be, in many 

contexts, better approximations of the true reliabilities than the measures usually reported in 

PLS-based SEM contexts – the composite reliability and Cronbach’s alpha coefficients.  
 

Figure B.4.11. Explore Dijkstra's consistent PLS outputs 

 

 
 

    Also included in the outputs generated via this menu option are PLSc loadings; along with the 

corresponding standard errors, one-tailed and two-tailed P values, T ratios, and confidence 

intervals. Given that some of these outputs depend on the confidence level used, this menu 

option allows you to set that confidence level. As noted earlier, normally the confidence level 

used is the complement of the significance level used (i.e., 1 minus the significance level used). 

For instance, if the significance level used is 0.05, then the confidence level used should 

normally be set at 0.95 (which is also the software’s default).  
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B.4.12. Logistic regression 

    The menu option “Explore logistic regression” allows you to create a logistic regression 

variable (Kock, 2023b) as a new indicator that has both unstandardized and standardized values 

(see Figure B.4.12). Logistic regression is normally used to convert an endogenous variable on a 

non-ratio scale (e.g., dichotomous) into a variable reflecting probabilities. You need to choose 

the variable to be converted, which should be an endogenous variable, and its predictors. The 

new logistic regression variable is meant to be used as a replacement for the endogenous variable 

on which it is based.  
 

Figure B.4.12. Explore logistic regression 

 

 
 

    Two algorithms are available: probit and logit (Kock, 2023b). The former is recommended for 

dichotomous variables; the latter for non-ratio variables where the number of different values 

(a.k.a. “distinct observations”) is greater than 2 but still significantly smaller than the sample 

size; e.g., 10 different values over a sample size of 100. The unstandardized values of a logistic 

regression variable are probabilities; going from 0 to 1. Since a logistic regression variable can 

be severely collinear with its predictors, you can set a local full collinearity VIF cap for the 

logistic regression variable. Predictor-criterion collinearity, or lateral collinearity (Kock & Lynn, 

2012), is rarely assessed or controlled in classic logistic regression algorithms. 

    You can view the number of different values (a.k.a. “distinct observations”) for all indicators 

and latent variables, as well as the ratio between the number of different values and sample size. 
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The first is an absolute and the second a relative variation measure. These are available under the 

menu options “View or save correlations and descriptive statistics for indicators” and “View 

latent variable coefficients”, respectively. These measures can help inform decisions about 

whether to use logistic regression, particularly in connection with endogenous latent variables. 

    If the number of different values is significantly smaller than the sample size for an 

endogenous latent variable, that means that a new logistic regression variable could be created 

and used as a replacement for the endogenous variable. One example would be 10 different 

values over a sample size of 100; or a 0.1 ratio between the number of different values and 

sample size. If several predictors are available, the new logistic regression variable will 

incorporate more variation than the endogenous variable on which it is based, which will 

typically be reflected in larger coefficients of association (e.g., path coefficients).  
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B.4.13. Additional model fit and quality indices 

    The menu option “Explore additional coefficients and indices” allows you to obtain an 

extended set of model fit and quality indices (see Figure B.4.13). This extended set of model fit 

and quality indices includes the classic indices normally included in reports of SEM analyses 

employing this software, as well as new indices that allow investigators to assess the fit between 

the model-implied and empirical indicator correlation matrices (Kock, 2020c). These new 

indices are the standardized root mean squared residual (SRMR), standardized mean 

absolute residual (SMAR), standardized chi-squared (SChS), standardized threshold 

difference count ratio (STDCR), and standardized threshold difference sum ratio (STDSR). 
 

Figure B.4.13. Extended set of model fit and quality indices 

 

 
 

    As with the classic model fit and quality indices, the interpretation of these new indices 

depends on the goal of the SEM analysis. Since these indices refer to the fit between the model-

implied and empirical indicator correlation matrices (Kock, 2020c), they become more 

meaningful when the goal is to find out whether one model has a better fit with the empirical 

data than another model. In many cases additional insights can be obtained by using these indices 

in conjunction with the classic indices. When assessing the model fit with the data, several 

criteria are recommended. These criteria are discussed below, together with the discussion of 

these new model fit and quality indices (Kock, 2020c). 

    SRMR and SMAR. The SRMR index is calculated as the square root of the mean of the sum 

of the squared differences between the contents of non-redundant cells of the model-implied and 

empirical indicator correlation matrices. The SMAR index is calculated as the mean of the sum 

of the absolute differences between those matrices. The model-implied indicator correlation 

matrix is obtained based on the model parameters (e.g., weights and loadings) estimated by the 

software. The empirical indicator correlation matrix is simply the matrix containing the 

correlations among the indicators used in the model. The non-redundant cells of these matrices 

are the upper or lower triangular cells, excluding the diagonal cells. Generally SRMR and 

SMAR values lower than 0.1 indicate acceptable fit (Kock, 2020c). 
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    SChS. The SChS index is calculated as the chi-squared coefficient obtained from a test of 

independence comparing the contents of non-redundant cells of the model-implied and empirical 

indicator correlation matrices. Here the contents of non-redundant cells of the model-implied 

indicator correlation matrix are treated as the observed values in a chi-squared test of 

independence, whereas the corresponding values in the empirical indicator correlation matrix are 

treated as the expected values. The number of degrees of freedom is calculated as the number of 

non-redundant cells minus 1, in line with what is usually done in traditional chi-squared tests of 

independence. For simplicity and consistency of application with respect to other model fit and 

quality indices, the P value associated with each SChS is calculated as the complement of the P 

value generated by the chi-squared test of independence (i.e., 1 minus that P value). Normally 

acceptable fit is indicated by a P value associated with a SChS that is equal to or lower than 

0.05; that is, significant at the 0.05 level (Kock, 2020c). This refers to the modified P value; the 

smaller it is, the better the fit. 

    STDCR and STDSR. The STDCR and STDSR indices are measures of the extent to which a 

model is free from instances in which the contents of non-redundant cells of the model-implied 

indicator correlation matrix differ significantly from the corresponding empirical indicator 

correlation matrix values. Here a heuristic threshold is used to establish whether two values 

differ significantly; this threshold is 0.2, twice the model-wide acceptable fit threshold for the 

SRMR and SMAR indices. The STDCR is calculated by dividing the number of non-redundant 

cells where significant differences do not exist by the total number of non-redundant cells. The 

STDSR index is calculated as the complement of the ratio obtained by dividing the sum of the 

absolute values of the differences between non-redundant cells where a significant difference 

exists by the total sum of the absolute values of the differences between non-redundant cells. 

These new STDCR and STDSR indices are calculated so that they can be used in ways 

analogous to other classic fit indices generated by this software. Generally values of the STDCR 

and STDSR equal to or greater than 0.7 indicate acceptable fit (Kock, 2020c).  
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B.4.14. Additional reliability coefficients 

    The menu option “Explore additional coefficients and indices” also allows you to obtain an 

extended set of reliabilities (or reliability coefficients). This extended set of reliabilities (see 

Figure B.4.14) includes the classic reliability coefficients normally included in reports of SEM 

analyses employing this software, plus the following, for each latent variable in your model: 

Dijkstra's PLSc reliability (also available via the menu option “Explore Dijkstra's consistent PLS 

outputs”), true composite reliability, and factor reliability. 
 

Figure B.4.14. Extended set of reliability coefficients 

 

 
 

    When factor-based PLS algorithms are used in analyses, the true composite reliability and 

the factor reliability are produced as estimates of the reliabilities of the true composites and 

factors (Kock, 2015b; 2017; 2019a; 2019b; 2019c). They are calculated in the same way as 

composite reliabilities, but with different loadings. These reliabilities are calculated after the 

iterative estimation process is complete, based on the final true composite and factor estimates, 

whereas the composite reliabilities are calculated during the iterative estimation process. When 

classic composite-based (i.e., non-factor-based) algorithms are used, both true composites and 

factors coincide, and are approximated by the composites generated by the software. As such, 

true composite and factor reliabilities equal the corresponding composite reliabilities whenever 

composite-based algorithms are used.  
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B.4.15. Additional discriminant validity outputs 

    The menu option “Explore additional coefficients and indices” also allows you to obtain an 

extended set of discriminant validity coefficients (see Figure B.4.15). This extended set of 

discriminant validity coefficients includes the classic coefficients used in discriminant validity 

assessment normally included in reports of SEM analyses employing this software, namely the 

correlations among latent variables and the square roots of those latent variables’ AVEs (shown 

on a table, with the square roots of AVEs along the diagonal). To these are added the following 

discriminant validity assessment coefficients: structure loadings and cross-loadings, full 

collinearity VIFs, as well as HTMT and HTMT2 ratios. 
 

Figure B.4.15. Extended set of discriminant validity coefficients 

 

 
 

    Discriminant validity assessment addresses the quality of a measurement instrument. The 

instrument itself is typically a set of question-statements, which are typically answered by 

multiple individuals as part of the administration of a questionnaire to those individuals. A 

measurement instrument has good discriminant validity if the question-statements (or other 

measures) associated with each latent variable are not confused by the respondents, in terms of 

their meaning, with the question-statements associated with other latent variables. 

    HTMT and HTMT2 ratios have been proposed for discriminant validity assessment 

particularly in the context of composite-based SEM via classic PLS algorithms; as opposed to 

factor-based SEM via modern algorithms that estimate factors (which have been available from 

this software for quite some time now). Our simulations suggest that these HTMT and HTMT2 

ratios are not particularly useful when used in combination with factor-based algorithms; the 

classic correlations among latent variables and square roots of AVEs seem to be a better choice. 

For the HTMT and HTMT2 ratios, the following coefficients are also provided: P values, and 

90% confidence intervals.  
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B.5. Settings 

    The “Settings” menu options allow you to view or change general SEM analysis settings (see 

Figure B.5). Here you can select the analysis algorithm used in the SEM analysis, the resampling 

method used to calculate standard errors and P values, as well as other elements that will define 

how the SEM analysis will be conducted. These menu options are discussed individually below. 

Several of them are discussed in more detail later in this document. 
 

Figure B.5. Settings menu options 

 

 
 

    The “View or change general settings” option allows you to set the outer model analysis 

algorithm, default inner model analysis algorithm, resampling method, and number of resamples. 

Through these sub-options, users can set outer and default inner model algorithms separately. 

Users are also allowed to set inner model algorithms for individual paths through a different 

option. If users choose not to set inner model algorithms for individual paths in an analysis of a 

new model (i.e., a model that has just been created), their choice of default inner model 

algorithm is automatically used for all paths. 

    The “View or change individual inner model analysis algorithm settings” option allows 

you to set inner model algorithms for individual paths. That is, for each path a user can select a 

different algorithm from among the following choices: “Linear”, “Warp2”, “Warp2 Basic”, 

“Warp3”, and “Warp3 Basic”. This option is particularly useful in empirical investigations where 

researchers have solid theoretical reasons to expect certain paths to be associated with nonlinear 

relationships of particular types (for an example of nonlinear theorizing in an action research 

context see: Kock et al., 2017). Those researchers may also have solid theoretical reasons to 

expect certain paths to be associated with linear relationships. Given that one of the main goals 

of SEM is to test theory, theoretical considerations should be given a very high priority in the 

selection of algorithms to be used for each path in a model. 

    The “View or change moderating effects settings” option allows you to set the moderating 

effects calculation option to be used by the software. You can choose among three options for 

moderating effects calculation: Two Stages, Variable Orthogonalization, and Indicator 

Products. The default moderating effects calculation option is Two Stages. All of these options 

apply to moderating effects that are explicitly included in the model, Moderating effects involve 

moderating variables and moderating links; the latter occurring between the moderating variables 

and direct links to which the variables point. Another test of similar effects, which complements 

these three options, is the full latent growth test (Hubona & Belkhamza, 2021; Kock, 2020a). 

This test could be seen as a comprehensive analysis of moderating effects where the moderating 

variable is “latent”, in the sense that it does not “disrupt” the model in any way. That is, in a full 

latent growth test, the moderating links are not explicitly included in the model, which makes its 
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results similar to those of multi-group analyses where no sample segmentation occurs (Kock, 

2020a). 

    The “View or change missing data imputation settings” option allows you to set the missing 

data imputation method to be used by the software, from among the following methods: 

Arithmetic Mean Imputation (the software’s default), Multiple Regression Imputation, 

Hierarchical Regression Imputation, Stochastic Multiple Regression Imputation, and Stochastic 

Hierarchical Regression Imputation. The missing data imputation method chosen will be used 

prior to execution of Step 3, and also after that when the option “Redo missing data 

imputation (via data pre-processing)” under the “Modify” menu option is selected. Kock 

(2014c) and Kock (2018a) provide a detailed discussion of these methods, as well as of a Monte 

Carlo simulation whereby the methods’ relative performances are investigated. 

    The “View or change data modification settings” option allows you to select a range 

restriction variable type, range restriction variable, range (min-max values) for the restriction 

variable, and whether to use only ranked data in the analysis. Through these sub-options, users 

can run their analyses with sub-samples defined by a range restriction variable, which is chosen 

from among the indicators available. They can also conduct their analyses with only ranked data, 

whereby all of the data is automatically ranked prior to the SEM analysis. When data on a ratio 

scale is ranked, typically the value distances that typify outliers are significantly reduced, 

effectively eliminating outliers without any decrease in sample size. 

    The “View or change individual latent variable weight and loading starting value 

settings” option allows you to set the initial values of the weights and loadings for each latent 

variable. The default is 1 for all weights and loadings. With this option, latent variables measured 

in a reversed way, as well as formative latent variables with most of their weights and loadings 

ending up being negative, can be more easily operationalized. 

    Several of the options above, and their component elements, are discussed in more detail in 

the subsections below, still in this section describing the main window options. These 

subsections include further discussions about data labels, general settings, data modification 

settings, individual inner model analysis algorithm settings, as well as individual latent variable 

weight and loading starting value settings. A further discussion of grouped descriptive statistics, 

which can be saved through a sub-option under the “Data” options, is also provided.  
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B.6. General settings 

    The “View or change general settings” option allows users to set the outer model analysis 

algorithm, default inner model analysis algorithm, resampling method, and number of resamples 

(see Figure B.6). Through these sub-options, users can set outer and default inner model 

algorithms separately. Users are also allowed to set inner model algorithms for individual paths, 

but through a different settings option. If users choose not to set inner model algorithms for 

individual paths, their choice of default inner model algorithm is automatically used for all paths. 
 

Figure B.6. View or change general settings window 

 

 
 

    The settings chosen for each of the options can have a dramatic effect on the results of a 

SEM analysis. At the same time, the right combinations of settings can provide major insights 

into the data being analyzed. As such, the settings’ options should be used with caution, and 

normally after a new project file (with a unique name) is created and the previous one saved. 

This allows users to compare results and, if necessary, revert back to project files with previously 

selected settings. Given that one of the main goals of SEM is to test theory, theoretical 

considerations should be given a very high priority in the selection of combinations of settings. 

    A key criterion for the calculation of the weights, observed in virtually all classic PLS-based 

algorithms, is that the regression equation expressing the relationship between the indicators and 

the latent variable scores has an error term that equals zero. In other words, in classic PLS-based 

algorithms the latent variable scores are calculated as exact linear combinations of their 

indicators. This is not the case with the “Factor-Based PLS” algorithms provided by this 

software, as these algorithms estimate latent variable scores fully accounting for measurement 

error (Kock, 2017; 2019a; 2019b; 2019c). 

    In nonlinear SEM analyses, the warping takes place during the estimation of path coefficients, 

and after the estimation of all weights, latent variable scores, and loadings in the model. The 

weights and loadings of a model with latent variables make up what is often referred to as the 
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outer model (a.k.a. measurement model), whereas the path coefficients among latent variables 

make up what is often called the inner model (a.k.a. structural model).  
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B.6.1. Outer model analysis algorithms 

    The outer model analysis algorithms available are Factor-Based PLS Type CFM3, Factor-

Based PLS Type CFM2, Factor-Based PLS Type REG2, Factor-Based PLS Type PTH2, 

Factor-Based PLS Type CFM1, Factor-Based PLS Type REG1, Factor-Based PLS Type 

PTH1, PLS Regression, PLS Mode M, PLS Mode M Basic, PLS Mode A, PLS Mode A 

Basic, PLS Mode B, PLS Mode B Basic, and Robust Path Analysis. All of these outer model 

algorithms share a common characteristic. They calculate latent variable scores as exact linear 

combinations of their indicators, or of their indicators and measurement errors. With the 

exception of the Robust Path Analysis algorithm, all of these algorithms perform iterations until 

they converge to a solution. 

    There has been a long and in some instances fairly antagonistic debate among proponents and 

detractors of the use of Wold’s original PLS algorithms (Adelman & Lohmoller, 1994; Kock, 

2015b; 2019a; 2019b; 2019c; Lohmöller, 1989; Wold, 1980) in the context of SEM. This debate 

has been fueled by one key issue, which is analogous to the issue underlying the related principal 

components versus factor analysis debate. Wold’s original PLS algorithms do not deal with 

actual factors, as covariance-based SEM algorithms do; but with composites, which are exact 

linear combinations of indicators (Kock, 2015a; 2015b; 2017; 2019a; 2019b; 2019c). The 

“Factor-Based PLS” algorithms provided by this software have been developed specifically 

to address this perceived limitation of Wold’s original PLS algorithms. 

    The Factor-Based PLS Type CFM3, Factor-Based PLS Type CFM2 and Factor-Based 

PLS Type CFM1 algorithms generate estimates of both true composites and factors, in two 

stages, explicitly accounting for measurement error (Kock, 2015b; 2017). Like covariance-based 

SEM algorithms, these algorithms are fully compatible with common factor model 

assumptions, including the assumption that all indicator errors are uncorrelated. In their first 

stages, these algorithms employ a new “true composite” estimation sub-algorithm, which 

estimates composites based on mathematical equations that follow directly from the common 

factor model. The second stage employs a new “variation sharing” sub-algorithm, which can be 

seen as a “soft” version of the classic expectation-maximization algorithm (Dempster et al., 

1977; Kock, 2015b; Kock & Sexton, 2017) used in maximum likelihood estimation, with 

apparently faster convergence and nonparametric properties. The Factor-Based PLS Type 

CFM3 algorithm employs both loadings and reliabilities from Dijkstra's consistent PLS (a.k.a. 

PLSc) technique; the former (i.e., loadings) to improve computation efficiency, and the latter 

(i.e., reliabilities) to estimate measurement error and true composite weights. The Factor-Based 

PLS Type CFM2 algorithm employs reliabilities from Dijkstra's consistent PLS technique, but 

not loadings. The Factor-Based PLS Type CFM1 algorithm does not employ Dijkstra's 

consistent PLS technique at all, instead using Cronbach’s alpha coefficients to estimate 

measurement error and true composite weights. 

    Factor-Based PLS Type REG2, Factor-Based PLS Type PTH2, Factor-Based PLS Type 

REG1 and Factor-Based PLS Type PTH1 are also factor-based PLS algorithms that generate 

estimates of both composites and factors, in two stages, fully accounting for measurement error. 

The Factor-Based PLS Type REG2 and Factor-Based PLS Type REG1 algorithms first 

estimate composites via PLS Regression (discussed below), and then estimate factors employing 

variation sharing (Kock, 2015b; 2017; Kock & Sexton, 2017). Among the factor-based 

algorithms available in this software, these Factor-Based PLS Type REG2 and Factor-Based PLS 

Type REG1 algorithms can be seen as the closest to Wold’s original PLS design. The Factor-

Based PLS Type REG2 algorithm employs reliabilities from Dijkstra's consistent PLS 
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technique to estimate measurement error and true composite weights; the Factor-Based PLS 

Type REG1 algorithm employs Cronbach’s alpha coefficients for that purpose. 

    The Factor-Based PLS Type PTH2 and Factor-Based PLS Type PTH1 algorithms first 

estimate composites via Robust Path Analysis (discussed below), and then estimate factors 

employing variation sharing (Kock, 2015b; 2017; Kock & Sexton, 2017). By doing so, these 

algorithms address several of the concerns about Wold’s original PLS algorithms raised in an 

important critical article by Rönkkö & Evermann (2013). These algorithms can also be seen as 

addressing the call for simplicity made in a thought-provoking article on PLS by Rigdon (2012). 

These algorithms share a common characteristic with the algorithms discussed above. The 

Factor-Based PLS Type PTH2 algorithm employs reliabilities from Dijkstra's consistent PLS 

technique to estimate measurement error and true composite weights; while the Factor-Based 

PLS Type PTH1 algorithm employs Cronbach’s alpha coefficients to estimate those weights. 

    Unlike the Factor-Based PLS Type CFM3, Factor-Based PLS Type CFM2 and Factor-Based 

PLS Type CFM1 algorithms; the Factor-Based PLS Type REG2, Factor-Based PLS Type 

PTH2, Factor-Based PLS Type REG1 and Factor-Based PLS Type PTH1 algorithms do not 

impose certain common factor model assumptions that some researchers have claimed do 

normally hold in practice, such as the assumption that all indicator errors are uncorrelated. 

    PLS Regression has been the default outer model algorithm since the software’s inception, 

and is maintained as such as a matter of tradition. This algorithm iterates until the outer model 

weights become stable with the following calculations being performed in successive iterations 

for each latent variable in the model: (a) the outer model weights are calculated through a least 

squares regression where the latent variable is the predictor and the indicators are the criteria; 

and (b) the latent variable is calculated as an exact linear combination of the indicator scores 

(Kock & Mayfield, 2015; Kock & Moqbel, 2016). In the PLS Regression algorithm, the inner 

model does not influence the outer model. That is, the weights are not influenced by the links 

connecting latent variables, which are created by the user in Step 4. 

    The following outer model algorithms are similar to PLS Regression, but in them the inner 

model influences the outer model: PLS Mode M, PLS Mode M Basic, PLS Mode A, PLS 

Mode A Basic, PLS Mode B, and PLS Mode B Basic. These are classic PLS algorithms that 

have been historically associated with PLS-based SEM software (Chatelin et al., 2002; Kock, 

2016a; Kock & Mayfield, 2015; Kock & Moqbel, 2016; Temme et al., 2006). In them, the 

iterative process leading to the calculation of latent variable scores involves the intermediate 

calculation of path coefficients, correlations, and signs of correlations. These are used as inputs 

in the calculation of weights in successive iterations, typically leading to the addition of 

collinearity among latent variables that are linked. 

    The above collinearity inflation that occurs when the inner model influences the outer model 

often has the effect of strengthening associations among linked latent variables, but not enough 

to overcome to underestimation bias inherent in composite-based SEM algorithms (Kock, 2015a; 

2015b). This tendency toward collinearity inflation is a relatively small but real phenomenon that 

has been presented as a weakness of PLS-based SEM, and that has been referred to as the 

“capitalization on error” problem of PLS-based algorithms (see, e.g., Goodhue et al., 2012; Kock 

& Hadaya, 2018). This problem is generally overstated, as PLS-based algorithms in general tend 

to also reduce collinearity compared to covariance-based SEM. That is, when the inner model 

influences the outer model collinearity is indeed increased, but often not to the extent that the 

increase offsets the previous collinearity decrease that normally results from the use of PLS-



WarpPLS User Manual: Version 8.0 

 51 

based algorithms. Moreover, capitalization on error is only a problem in cases where minimum 

sample size requirements are significantly underestimated (Kock, 2023c; Kock & Hadaya, 2018). 

    PLS Mode M is often referred as the “MIMIC” or “mixed” mode. In it, the inner model 

influences the outer model through path coefficients. The outer model is estimated employing 

factor-to-indicators or indicators-to-factor causality stances, depending on whether latent 

variables are defined as formative or reflective (Kock & Mayfield, 2015; Kock & Moqbel, 

2016). PLS Mode M in fact uses either PLS Mode A or PLS Mode B, based on whether latent 

variables are defined as reflective or formative, respectively. The PLS modes A and B are 

discussed below. 

    PLS Mode M Basic is a variation of PLS Mode M in which the inner model influences the 

outer model through the signs of correlations among latent variables. This corresponds to what 

Lohmöller (1989) refers to as a “basic scheme”, also referred to as a “centroid scheme” (Kock & 

Mayfield, 2015; Kock & Moqbel, 2016; Tenenhaus et al., 2005). 

    For the purposes of PLS-based SEM, the schemes known as “centroid” and “factorial” are 

largely redundant (Kock & Mayfield, 2015; Kock & Moqbel, 2016; Tenenhaus et al., 2005), 

but they share a common property. They tend to reduce the number of instances of Simpson’s 

paradox (Kock, 2015e; Kock & Gaskins, 2016; Wagner, 1982) in the SEM analysis results. 

Because of this property and the fact that these two schemes are redundant, this software 

implements only one of them, the “centroid” scheme. This scheme is referred to as “basic”, for 

simplicity and consistency with prior seminal publications that set the foundations of PLS-based 

SEM (see, e.g., Kock & Mayfield, 2015; Kock & Moqbel, 2016; Lohmöller, 1989). 

    PLS Mode A is often referred to as the “reflective” mode, which is arguably incorrect because 

both reflective and formative latent variables can be used with this algorithm (Kock & Mayfield, 

2015; Kock & Moqbel, 2016). In other words, using PLS Mode A does not make a formative 

latent variable become a reflective latent variable (Kock & Mayfield, 2015). In it, the inner 

model influences the outer model through path coefficients and correlations, depending on 

whether the links go into or out from each latent variable, respectively. In this mode the outer 

model weights are calculated through a least squares regression where the latent variable is the 

predictor and the indicators are the criteria. PLS Mode A Basic is a variation of PLS Mode A in 

which the inner model influences the outer model through the signs of the correlations among 

latent variables. 

    PLS Mode B is often referred to as the “formative” mode. This is arguably incorrect for the 

same reason discussed above, namely that both reflective and formative latent variables can be 

used with this algorithm (Kock & Mayfield, 2015; Kock & Moqbel, 2016). In other words, using 

PLS Mode B does not turn a reflective latent variable into a formative latent variable. However, 

PLS Mode B is often less stable than PLS Mode A, and also tends to cause a significant increase 

in collinearity among linked latent variables (Kock, 2021a; Kock & Mayfield, 2015). In it, the 

inner model influences the outer model through path coefficients and correlations, depending on 

whether the links go into or out from each latent variable, respectively. In this mode the outer 

model weights are calculated through a least squares regression where the indicators are the 

predictors and the latent variable the criterion. PLS Mode B Basic is a variation of PLS Mode B 

in which the inner model influences the outer model through the signs of the correlations among 

latent variables. 

    The Robust Path Analysis algorithm is a simplified algorithm in which latent variable scores 

are calculated by averaging the scores of the indicators associated with the latent variables. That 

is, in this algorithm weights are not estimated through PLS Regression. This algorithm is called 
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“robust” path analysis, because a standard path analysis (Kock et al., 2022), where all latent 

variables are measured through single indicators, can be conducted through it, and the P values 

can be calculated through the nonparametric resampling or stable methods implemented through 

the software. If all latent variables are measured with single indicators, the Robust Path Analysis 

algorithm will yield latent variable scores and various parameters that are identical to those 

generated through the other algorithms, but with greater computational efficiency.  
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B.6.2. Inner model analysis algorithms 

    Many relationships in nature, including relationships involving behavioral variables, are 

nonlinear (Kock, 2010; 2021c; 2016c; Kock & Gaskins, 2016) and follow a pattern known as U-

curve (or inverted U-curve). In this pattern a variable affects another in a way that leads to a 

maximum or minimum value, where the effect is either maximized or minimized, respectively 

(Kock, 2010; 2016c; Kock & Gaskins, 2016). This type of relationship is also referred to as a J-

curve pattern; a term that is more commonly used in economics and the health sciences. For an 

example of nonlinear theorizing in an action research context see: Kock et al. (2017). 

    The term “U-curve” is used here also to refer to nonlinear relationships that can be 

represented as sections of a U curve. As such, it covers all noncyclical nonlinear relationships. 

These relationships include the logarithmic, hyperbolic decay, exponential decay, 

exponential, and quadratic relationships, among others. That is, these relationships can be 

conceptually modeled as variations of U-curve relationships (Kock, 2010; 2016c; 2021c; Kock & 

Gaskins, 2016; Kock et al., 2017). 

    The default inner model analysis algorithms available are the following: Linear, Warp2, 

Warp2 Basic, Warp3, and Warp3 Basic. All of these inner model algorithms share a common 

characteristic. They calculate path coefficients through least squares regression algorithms based 

on the latent variable scores calculated through one of the outer model analysis algorithms 

available. 

    The Linear algorithm does not perform any warping of relationships. The Warp2 algorithm 

tries to identify U-curve relationships among linked latent variables, and, if those relationships 

exist, the algorithm transforms (or “warps”) the scores of the predictor latent variables (Kock, 

2010; 2016c) so as to better reflect the U-curve relationships in the estimated path coefficients in 

the model. Here the signs of the path coefficients are initially (i.e. prior to the inner model least 

squares regressions) assigned as the signs of the corresponding path coefficients obtained 

without any warping. Similarly to the outer model “basic” versions, the Warp2 Basic algorithm 

is a variation of the Warp2 algorithm that tends to reduce the number of instances of Simpson’s 

paradox (Kock, 2015e; Kock & Gaskins, 2016; Wagner, 1982) in the final results. This happens 

because in this basic version the signs of path coefficients are initially assigned as the signs of 

the corresponding correlations obtained without any warping. 

    The Warp3 algorithm, the default algorithm used by the software, tries to identify 

relationships among latent variables defined by functions whose first derivatives are U-curves 

(Kock, 2010; Kock & Gaskins, 2016). These types of relationships follow a pattern that is more 

similar to an S-curve (or a somewhat distorted S-curve). An S-curve can be seen as a 

combination of two connected U-curves, one of which is inverted (Kock, 2010). Examples of S-

curve functions are the sigmoid, hyperbolic sine and hyperbolic tangent. The logistic function is 

a type of sigmoid function, and thus is also an example of S-curve function. Similarly to the 

Warp2 Basic algorithm, the Warp3 Basic algorithm is a variation of the Warp3 algorithm that 

tends to reduce the number of instances of Simpson’s paradox (Kock, 2015e; Kock & Gaskins, 

2016; Wagner, 1982) in the final results. Again, here this happens because the signs of path 

coefficients are initially assigned as the signs of the corresponding correlations obtained without 

any warping. 

    In summary, with the exception of the “Linear” algorithm, all of the default inner model 

analysis algorithms perform nonlinear transformations on the predictor latent variable scores 

prior to the calculation of path coefficients. In other words, except for the “Linear” algorithm, 

these algorithms “warp” the predictor latent variable scores by finding best-fitting nonlinear 
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functions that minimize sums of squared residuals on a bivariate basis (Kock, 2010; 2021c; Kock 

& Gaskins, 2016). This process can be seen as another least squares minimization stage that is 

“in between” those used in the calculation of latent variable scores and path coefficients.  
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B.6.3. Resampling methods 

    One of several resampling methods may be selected for the calculation of P values and related 

coefficients (e.g., standard errors). In the calculation of P values, a one-tailed test is generally 

recommended if the coefficient is assumed to have a sign (positive or negative), which should be 

reflected in the hypothesis that refers to the corresponding association (Kock, 2015a). Hence this 

software reports one-tailed P values for coefficients used in hypothesis testing (e.g., path 

coefficients); from which two-tailed P values can be easily obtained if needed (Kock, 2015a). 

The software also reports at several points, in addition to one-tailed P values: two-tailed P 

values, T ratios, and confidence intervals. The available resampling methods used to generate 

standard errors, which are in turn used in the calculation of P values and other hypothesis-testing 

coefficients (Kock, 2014b; 2016b; 2018b), are the following: Stable1, Stable2, and Stable3, 

Bootstrapping, Jackknifing, Blindfolding, and Parametric. 

    With the Stable1 method, the software’s default up until version 4.0 (when it was called 

simply the “stable” method), P values are calculated through nonlinear fitting of standard errors 

to empirical standard errors generated with the other resampling methods available. In other 

words, the Stable1 method could be viewed as a quasi-parametric method that yields P values 

that try to approximate the “average” P values generated by the software’s other resampling 

methods. 

    The Stable2 and Stable3 methods have been developed as alternatives to the Stable1 method. 

Unlike the Stable1 method, they rely on the direct application of exponential smoothing formulas 

(for details, see: Kock, 2014b and Kock, 2018b), and that can thus be more easily implemented 

and tested by methodological researchers. Several Monte Carlo experiments show that the 

Stable2 and Stable3 methods yield estimates of the actual standard errors that are consistent 

with those obtained via bootstrapping, in many cases yielding more precise estimates of the 

actual standard errors (Kock, 2014b; 2018b; Kock & Hadaya, 2018). The more accurate of the 

two methods seems to be the Stable3 method, which also appears to be more accurate than the 

Stable1 method. As such, the Stable3 method is set as the software’s default starting in 

version 5.0. 

    With the Parametric method, P values are calculated assuming multivariate normality and 

also that path coefficient estimates are distributed as expected based on the central limit theorem. 

Neither the Parametric method nor the three “stable” methods (Stable1, Stable2 and Stable3) 

actually generates resamples, so calling them resampling methods is done here for simplicity in 

the grouping of settings options. Because no resamples are generated, these are the most efficient 

of the methods from a computing load perspective. These methods can be particularly useful in 

the analysis of large datasets, as in these cases creating resamples can be computationally very 

taxing. With the emergence of the concept of “big data”, the need to analyze large datasets is 

becoming increasingly common. 

    Bootstrapping employs a resampling algorithm that creates a number of resamples (a number 

that can be selected by the user), by a method known as “resampling with replacement”. This 

means that each resample contains a random arrangement of the rows of the original dataset, 

where some rows may be repeated. The commonly used analogy of a deck of cards being 

reshuffled, leading to many resample decks, is a good one; but not entirely correct because in 

Bootstrapping the same “card” may appear more than once in each of the resample “decks”. 

    Jackknifing, on the other hand, creates a number of resamples that equals the original sample 

size, and where each resample has one row removed. That is, the sample size of each resample is 

the original sample size minus 1. Thus, when Jackknifing is selected the number of resamples 
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is automatically set as the sample size. This refers to the most common form of jackknifing, 

also known as “delete-1” and “classic” jackknifing, which is the one implemented through this 

software. 

    Blindfolding employs a resampling algorithm that creates a number of resamples (a number 

that can be selected by the user) by a method whereby each resample has a certain number of 

rows replaced with the means of the respective columns. The number of rows modified in this 

way in each resample equals the sample size divided by the number of resamples. For example, 

if the sample size is 200 and the number of resamples selected is 100, then each resample will 

have 2 rows modified. If a user chooses a number of resamples that is greater than the sample 

size, the number of resamples is automatically set to the sample size (as with Jackknifing). 

    The default number of resamples for Bootstrapping and Blindfolding is 100. It can be 

modified by entering a different number in the appropriate edit box. (Please note that we are 

talking about the number of resamples here, not the sample size of the original dataset.) Leaving 

the number of resamples for Bootstrapping as 100 is recommended because it has been 

shown that higher numbers of resamples lead to negligible improvements in the reliability of P 

values (see, e.g., Goodhue et al., 2012). In fact, according to the original developer of the 

Bootstrapping method, even setting the number of resamples at 50 is likely to lead to fairly 

reliable P value estimates (Efron et al., 2004). 

    Conversely, increasing the number of resamples well beyond 100 leads to a higher 

computation load on the software, making the software look like it is having a hard time coming 

up with the results. In very complex models, a high number of resamples may make the software 

run very slowly. Some researchers have suggested in the past that a large number of resamples 

can address problems with the data, such as the presence of outliers due to errors in data 

collection. This opinion is not shared by the original developer of the Bootstrapping method, 

Bradley Efron (see, e.g., Efron et al., 2004). 

    Not considering the “stable” methods, arguably Jackknifing is particularly good at addressing 

problems associated with the presence of outliers due to errors in data collection. Generally 

speaking, Jackknifing tends to generate more stable resample path coefficients (and thus more 

reliable P values) with small sample sizes (lower than 100), and with samples containing outliers 

(see, e.g., Chiquoine & Hjalmarsson, 2009). Monte Carlo simulations suggest that the “stable” 

methods perform better than Jackknifing in this respect (Kock, 2014b; 2018b). 

    Again, not considering the “stable” methods, Bootstrapping tends to generate more stable 

resample path coefficients (and thus more reliable P values) with larger samples and with 

samples where the data points are evenly distributed on a scatter plot. Monte Carlo simulations 

suggest that the “stable” methods perform better than Bootstrapping in this respect as well 

(Kock, 2014b; 2018b). The use of Bootstrapping with small sample sizes (lower than 100) has 

been discouraged (Nevitt & Hancock, 2001; Kock, 2018b). 

    Generally speaking, Bootstrapping and Jackknifing can be seen as complementary resampling 

methods, in that one tends to perform well in situations where the other does not, and vice-versa. 

Nevertheless, the “stable” methods provided by this software seem to be an improvement over 

them, as indicated by Monte Carlo simulations (Kock, 2014b; Kock, 2018b). A set of related 

Monte Carlo simulations reported by Kock & Hadaya (2018) suggests that the “stable” methods 

help avoid the “capitalization on error” problem, often associated with PLS-based SEM, when 

appropriate sample sizes are employed in empirical studies (see, also: Kock, 2018b). 

    Blindfolding tends to perform somewhere in between Jackknifing and Bootstrapping. If the 

number of resamples is set as very close to the sample size, particularly with small sample sizes 
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(lower than 100) and with samples containing outliers, Blindfolding performs similarly to 

Jackknifing. With larger samples and with samples where the data points are evenly distributed 

on a scatter plot, Blindfolding tends to performs more like Bootstrapping, especially when the 

number of resamples is set as the same for both algorithms. 

    Prior to the development of the “stable” methods, a recommendation was usually made in 

connection with Bootstrapping and Jackknifing. Since the warping algorithms are also sensitive 

to the presence of outliers, the recommendation was to estimate P values with both 

Bootstrapping and Jackknifing, which are complementary resampling methods, and use the P 

values associated with the most stable coefficients. An indication of instability is a high P value 

(i.e., statistically non-significant) associated with path coefficients that could be reasonably 

expected to yield low P values. For example, with a sample size of 100, a path coefficient of 0.2 

could be reasonably expected to yield a P value that is statistically significant at the 0.05 level. If 

that is not the case, there may be a stability problem. Another indication of instability is a 

marked difference between the P values estimated through Bootstrapping and Jackknifing. 

    The recommendation above was based on the fact that P values can be easily estimated using 

two or more resampling methods by following the simple procedure outlined as follows. Run a 

SEM analysis of the desired model, using one of the resampling methods, and save the project. 

Then save the project again, this time with a different name, change the resampling method, and 

run the SEM analysis again. Then save the second project again. Each project file will now have 

results that refer to one of the resampling methods. The P values can then be compared, and the 

most stable ones used in a research report on the SEM analysis. While this is a perfectly valid 

approach for the calculation of P values, as the coefficients to which the P values refer do not 

change across analyses, it is very important to fully disclose this to the readers of the research 

report (or reports) written based on the SEM analyses. 

    An alternative to the above approach is the use one of the “stable” methods, particularly 

the Stable3 method (see, e.g., Kock, 2014b; 2018b; Kock & Hadaya, 2018), as these methods 

can be seen as yielding P values that are consistent with and often more precise than the P values 

generated by the software’s other resampling methods. Using these “stable” methods has the 

advantage of requiring much less manual work from the user. Based on various tests in the 

context of PLS-based SEM, it seems that the Stable3 method yields fairly reliable results for path 

coefficients associated with direct effects (Kock, 2014b; 2018b; Kock & Hadaya, 2018). It is less 

clear if the Stable3 method, or any of the other “stable” methods, is advisable for the calculation 

of P values for path coefficients associated with indirect and total effects, and research in this 

area is ongoing.  
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B.7. Individual inner model algorithm settings 

    The “View or change individual inner model algorithm settings” option allows users to set 

inner model algorithms for individual paths (see Figure B.7). The algorithms available are the 

same as those that can be selected as default inner model analysis algorithms: Linear, Warp2, 

Warp2 Basic, Warp3, and Warp3 Basic. 
 

Figure B.7. View or change individual inner model algorithm settings 

 

 
 

    Individual inner model algorithms can be set for both regular and interaction effect latent 

variables; the latter are associated with moderating effects. Since moderating effects themselves 

incorporate nonlinearity, it is usually recommended that they be set here as “Linear”; 

otherwise the nonlinearity inherent in moderation is captured by the nonlinear algorithm 

chosen, in many cases rendering the moderating effect non-significant (Kock, 2021c; Kock & 

Gaskins, 2016). If no choice is made for an individual inner model algorithm, the default inner 

model analysis algorithm is used. If a model is changed after an analysis is conducted, the 

individual inner model algorithms are set to the default inner model analysis algorithm. 

    This option allows users to customize their analyses based on theory and past empirical 

research. If theory or results from past empirical research suggest that a specific link between 

two latent variables is linear, then the corresponding path can be set to be analyzed using the 

Linear algorithm. Conversely, if theory or results from past empirical research suggest that a 

specific link between two latent variables should have the shape of a U curve (or J curve), the 

corresponding path can be set to be analyzed using the Warp2 algorithm or the Warp2 Basic 

algorithm. Kock et al. (2019) provide an example of explicit linear and nonlinear theorizing with 

respect to different links in the same model, leading to linear and nonlinear relationships being 

assessed simultaneously.  
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B.8. Moderating effects settings 

    The “View or change moderating effects settings” option allows you to set the moderating 

effects calculation option to be used by the software. You can choose among three options for 

moderating effects calculation: Two Stages, Variable Orthogonalization, and Indicator 

Products. The default moderating effects calculation option is Two Stages, whereby latent 

variable scores are calculated first and then used in a second stage for the creation of the 

interaction (or product) latent variable that implements the moderating effect. The Variable 

Orthogonalization option implements a similar procedure, but stochastically departs from a 

random variable, which is by definition fully orthogonal to all of the latent variables in the 

model, for the creation of the interaction variable that implements the moderating effect. This is 

done via a technique similar to the variation sharing method described by Kock (2019a), which is 

the foundation of modern factor-based SEM algorithms that go from composites to factors 

(Kock, 2023c). The Indicator Products option employs indicator products for the creation of 

the interaction variable that implements the moderating effect, a classic approach used in PLS-

based SEM. 

    Unless a model is improperly specified, and the improper specification leads to severe biases, 

the options Two Stages and Variable Orthogonalization should yield fairly similar results. An 

example of a situation in which this would not occur would be a model that suffers from severe 

endogeneity (Kock, 2022a), in which case the Variable Orthogonalization option may yield more 

trustworthy results. These two options should also yield results similar to the Indicator Products 

option when classic composite-based PLS algorithms are used. On the other hand, if factor-based 

PLS algorithms are used, the results produced by the Indicator Products option should differ, 

particularly if the number of indicators of the interaction variable that implements the 

moderating effect is small (e.g., in the single digits). The reason for this is that the interaction 

variable that implements the moderating effect is treated as a factor by factor-based PLS 

algorithms. 

    If the Indicator Products option is used, the number of indicators of the interaction variable is 

the product of the number of indicators of the moderating variable and the number of indicators 

of the predictor variable in the link that is moderated. For example, if the number of indicators of 

the moderating variable is 3, and the number of indicators of the predictor variable in the link 

that is moderated is 4, then the number of indicators of the interaction variable is 12. When the 

number of indicators of the interaction variable becomes large, then the reliability of the 

corresponding true composite and factor converge. As this happens, the true composite and 

factor also converge (Kock, 2019a). This is a variation of the phenomenon sometimes referred to 

as “consistency at large” (Wold et al., 2001). This is why the results produced by the Indicator 

Products option should differ from the results yielded by the other options, if: (a) the number of 

indicators of the interaction variable that implements the moderating effect is small, and factor-

based PLS algorithms are used. 

    All of the above options apply to moderating effects that are explicitly included in the model. 

Moderating effects involve moderating variables and moderating links; the latter occurring 

between the moderating variables and direct links to which the variables point. Another test of 

similar effects, which complements the above options, is the full latent growth test (also 

implemented by this software, but via a different menu option). This test could be seen as a 

comprehensive analysis of moderating effects where the moderating variable is “latent”, in the 

sense that it does not “disrupt” the model in any way (Hubona & Belkhamza, 2021; Kock, 

2020a). That is, in a full latent growth test, the moderating links are not explicitly included in the 
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model, which makes its results similar to those of multi-group analyses where no sample 

segmentation occurs (Kock, 2020a). 

    Of the options above, the one most likely to yield results similar to full latent growth (Kock, 

2020a) is the Variable Orthogonalization option. The reason for this is that a latent variable that 

is fully orthogonal to the other latent variables in the model would “not be seen” by those other 

latent variables; i.e., it would not “disrupt” the model in any way. However, there is a key 

difference between the Variable Orthogonalization option and full latent growth. The 

Variable Orthogonalization option departs from a fully orthogonal variable, but this variable 

ends up being correlated with the endogenous variable to which its interaction (or product) latent 

variable points – unless the moderating effect is zero. Since the endogenous variable in question 

is likely correlated with other latent variables in the model, then the interaction (or product) 

latent variable also is correlated with those other latent variables.  
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B.9. Missing data imputation settings 

    The “View or change missing data imputation settings” option allows you to set the missing 

data imputation method to be used by the software, from among the following methods: 

Arithmetic Mean Imputation (the software’s default), Multiple Regression Imputation, 

Hierarchical Regression Imputation, Stochastic Multiple Regression Imputation, and Stochastic 

Hierarchical Regression Imputation. Kock (2014c) and Kock (2018a) provide a detailed 

discussion of these methods, as well as of a Monte Carlo simulation whereby the methods’ 

relative performances are investigated. The missing data imputation method chosen will be used 

prior to execution of Step 3, and also after that when the option “Redo missing data 

imputation (via data pre-processing)” under the “Modify” menu option is selected. 

    As noted above, a Monte Carlo simulation was conducted to assess the performance of five 

missing data imputation methods implemented through this software: Arithmetic Mean 

Imputation, Multiple Regression Imputation, Hierarchical Regression Imputation, Stochastic 

Multiple Regression Imputation, and Stochastic Hierarchical Regression Imputation. The 

detailed results are provided later in this document; see also: Kock (2014c) and Kock (2018a). In 

summary, Multiple Regression Imputation yielded the least biased mean path coefficient 

estimates, followed by Arithmetic Mean Imputation. When we look at mean loading estimates, 

Arithmetic Mean Imputation yielded the least biased results, followed by Stochastic Hierarchical 

Regression Imputation, and Hierarchical Regression Imputation. 

    Compared with the no missing data condition, none of the methods induced a reduction in 

standard errors for path coefficients. This is noteworthy since prior results outside the context of 

PLS-based SEM have tended to show a significant downward bias in standard errors, particularly 

for non-stochastic missing data imputation varieties. Such downward bias in standard errors has 

led to concerns regarding an inflation in type I errors, and warnings against the use of single 

missing data imputation methods in general (Enders, 2010; Kock, 2014c; 2018a; Newman, 

2014). Our results strongly suggest that such concerns may not be warranted in the context of 

PLS-based SEM.  
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B.10. Data modification settings 

    The “View or change data modification settings” option allows users to run their analyses 

with sub-samples defined by a range restriction variable, which is chosen from among the 

indicators available. (After Step 5 is completed, latent variable scores can also be added to the 

model as standardized indicators.). This option also allows users to conduct their analyses with 

only ranked data (see Figure B.10). 
 

Figure B.10. View or change data modification settings 

 

 
 

    Two range restriction variable types are available: standardized and unstandardized 

indicators. This means that the range restriction variable can be either a standardized or 

unstandardized indicator. Once a range restriction variable is selected, minimum and 

maximum values must be set (i.e., a range), which in turn has the effect of restricting the 

analysis to the rows in the dataset within that particular range. 

    The option of selecting a range restriction variable and respective range is useful in multi-

group analyses (Kock, 2014a) “done by hand”, as opposed to using the menu options “Explore 

multi-group analyses” or “Explore full latent growth”. In a multi-group analysis “done by hand” 

separate analyses are conducted for group-specific sub-samples, saved as different project files, 

and the results then compared against one another. One example would be a multi-country 

analysis, with each country being treated as a sub-sample, but without separate datasets for each 

country having to be provided as inputs. 

    Let us assume that an unstandardized variable called “Country” stores the values “1” (for 

Brazil), “2” (for New Zealand), and “3” (for the USA). To run the analysis only with data from 

Brazil one can set the range restriction variable as “Country” (after setting its type as 

“Unstandardized indicator”), and then set both the minimum and maximum values as “1” for the 

range. 

    This range restriction feature is also useful in situations where outliers are causing instability 

in a resample set, which can lead to abnormally high standard errors and thus inflated P values. 

Users can remove outliers by restricting the values assumed by a variable to a range that 

excludes the outliers, without having to modify and re-read a dataset. 

    Users can also select an option to conduct their analyses with only ranked data, whereby all 

of the data is automatically ranked prior to the SEM analysis (the original data is retained in 
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unranked format). When data measured on ratio scales is ranked, typically the value distances 

that typify outliers are significantly reduced, effectively eliminating outliers without any 

decrease in sample size. Contrary to popular belief, this cannot be achieved through 

standardization alone. 

    Often some information is lost due to ranking – e.g., the distances among data points based on 

answers on ratio scales. Thus a concomitant increase in collinearity may be observed, but 

typically not to the point of threatening the credibility of the results. The option of using only 

ranked data in the analysis can be very useful in assessments of whether the presence of outliers 

significantly affects path coefficients and respective P values, especially when outliers are not 

believed to be due to measurement error.  
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B.11. Weight and loading starting value settings 

    The “View or change individual latent variable weight and loading starting value 

settings” option allows users to set the initial values of the weights and loadings for each latent 

variable (see Figure B.11). This is a specialized option that will only rarely be used. The default 

starting value for all latent variables is 1. While any real number can be used here, normally only 

-1 and 1 are used. 
 

Figure B.11. View or change individual latent variable weight and loading starting value settings 

 

 
 

    This option reflects a little-known characteristic of classic PLS-based SEM analyses, which is 

that they do not always converge to the same solution. The estimated coefficients depend on the 

starting values of weights and loadings, thus leading to different solutions depending on the 

initial configurations of those starting values. Even in simple models, often at least two solutions 

exist – as long as latent variables are used, with multiple indicators. By convention the solution 

most often accepted as valid is the one associated with the default starting value for all latent 

variables, which is 1. 

    With this option, latent variables measured in a reversed way can be more easily 

operationalized. An example would be a latent variable reflecting boredom being measured 

through a set of indicators that individually reflect excitement. In this type of scenario, generally 

the starting value of weights and loadings for the latent variable should be set to -1. 

    This option can also be useful with formative latent variables for which most of the weights 

and loadings end up being negative after an analysis is conducted. In this case, paths associated 

with the latent variable may end up being reversed, leading to conclusions that are the opposite 

of what is hypothesized. The solution here would normally be a change in sign for starting value 

of weights and loadings, usually from 1 to -1.  
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C. Step 1: Open or create a project file to save your work 

    In Step 1 you will open or create a project file to save your work (see Figure C.1). Project 

files are saved with the “.prj” extension, and contain all of the elements needed to perform 

a SEM analysis. That is, they contain the original data used in the analysis, as well as 

information pertaining to the graphical model, the inner and outer model structures, and the 

results. 
 

Figure C.1. Step 1 window 

 

 
 

    Once an original data file is read into a project file, the original data file can be deleted 

without effect on the project file. The project file will store the original location and file name of 

the data file so that this information is available in case it is needed in the future, but the project 

file will no longer use the data file. 

    Project files may be created with one name, and then renamed using Windows Explorer or 

another file management tool. Upon reading a project file that has been renamed in this fashion, 

the software will detect that the original name is different from the file name, and will adjust 

accordingly the name of the project file that it stores internally. 

    Different users of this software can easily exchange project files electronically if they are 

collaborating on a SEM analysis project. This way they will have access to all of the original 

data, intermediate data, and SEM analysis results in one single file. Project files are relatively 

small. For example, a complete project file of a model containing 5 latent variables, 32 indicators 

(columns in the original dataset), and 300 cases (rows in the original dataset) will typically be 

only approximately 200 KB in size. Simpler models may be stored in project files as small as 50 

KB. 

    If a project file created with a previous version of the software is open, the software 

automatically recognizes that and converts the file to the new version. This takes placed even 

with project files where all of the five steps of the SEM analysis were completed. However, 

because each new version incorporates new features, with outputs stored within new or modified 
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software objects, normally previous versions of the software cannot properly reuse project 

files created with more recent versions.  
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D. Step 2: Read the raw data used in the SEM analysis 

    Through Step 2, you will read the raw data used in the SEM analysis (see Figure D.1). While 

this should be a relatively trivial step, it is in fact one of the steps where users have the most 

problems with other SEM software. Often a SEM software application will abort, or freeze, if the 

raw data is not in the exact format required by the SEM software, or if there are any problems 

with the data, such as missing values (empty cells). 
 

Figure D.1. Reading the raw data used in the SEM analysis 

 

 
 

    The buttons “Read from file” and “Read from clipboard” allow you to read raw data into the 

project file from a file or from the clipboard, respectively. This software employs an import 

wizard that avoids most data reading problems, even if it does not entirely eliminate the 

possibility that a problem will occur. Click only on the “Next” and “Finish” buttons of the file 

import wizard, and let the wizard do the rest. Soon after the raw data is imported, it will be 

shown on the screen, and you will be given the opportunity to accept or reject it. If there are 

problems with the data, such as missing column names, simply click “No” when asked if the data 

looks correct. 

   Raw data can be read directly from Excel files, with extensions “.xls” or “.xlsx”, or text files 

where the data is tab-delimited or comma-delimited. When reading from an “.xls” or “.xlsx” 

file that contains a workbook with multiple worksheets, make sure that the worksheet that 

contains the data is the first on the workbook. If the workbook has multiple worksheets, the 

file import wizard used in Step 2 will typically select the first worksheet as the source or raw 
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data. If the desired worksheet is not the first in the workbook, in many cases the user will be able 

to select the proper worksheet through the wizard, but this selection can lead to mistakes when 

made by novice users. Raw data files, whether Excel or text files, must have indicator names 

in the first row, and numeric data in the following rows. They may contain empty cells, or 

missing values; these will be automatically replaced with values calculated by one of the missing 

data imputation algorithms available in a later step. 

    The “View or change missing data imputation settings” option under “Settings” allows you 

to set the missing data imputation method to be used by the software in the next step. Users may 

want to employ non-automated approaches to deal with missing data, such as deleting the rows 

with missing cells, or manually replacing them with the average of nearby values on the same 

column. The most widely used approach, and also a reasonably reliable one in the context of 

PLS-based SEM, is replacing the missing values with column averages. This missing data 

imputation method is called “Arithmetic Mean Imputation”, and is automated by the software. It 

is in fact the software’s default missing data imputation method. Kock (2014c) and Kock (2018a) 

provide a detailed discussion of various missing data imputation methods, as well as of a Monte 

Carlo simulation whereby the methods’ relative performances are investigated. 

    While missing data imputation is done automatically by the software, you should not use 

datasets with too many missing values, as this will distort the results. A general rule of thumb is 

that your dataset should not have any column with more than 10 percent of its values missing; a 

more relaxed rule would be to set the threshold to 20 percent (Hair et al., 1987; 2009). On the 

other hand, Kock (2014c) and Kock (2018a) show that even 30 percent of missing data will 

still not lead to significant bias (from the perspective of theory testing) with any of the 

missing data imputation methods employed by this software. One can reduce the percentage 

of missing values per column by deleting rows in the dataset, where the deleted rows are the ones 

that refer to the columns with missing values. 

    One simple test can be used to try to find out if there are problems with a raw data file. Try to 

open it with a spreadsheet software program (e.g., Excel), if it is originally a text file; or try to 

create a tab-delimited text file with it, if it is originally a spreadsheet file. If you try to do either 

of these things, and the data looks corrupted (e.g., missing column names, misplaced columns, 

cells containing unrecognized symbols etc.), then it is likely that the original file has problems, 

which may be hidden from view. For example, a spreadsheet file may be corrupted, but that may 

not be evident based on a simple visual inspection of the contents of the file. 

    Common sources of problems are data files where variables storing numeric data are 

mixed in with data label variables. (The latter are often called “categorical variables”, and 

store text or alphanumeric data). Users should make sure that numeric data is separated from text 

or alphanumeric data, and also separately read into the software. The latter (i.e., text or 

alphanumeric data) can be read into data label variables, but certain precautions must be 

taken. Check the discussion in connection with the “Modify” menu option for more details; the 

“Modify” menu option is available from the software’s main window. When reading numeric 

data into the software, column names (i.e., headings) must not be numeric; in these cases, 

column names must be text or alphanumeric.  
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E. Step 3: Pre-process the data for the SEM analysis 

    In Step 3 the raw data will be pre-processed for the SEM analysis. This is mostly an automatic 

process, requiring only a few button clicks from you. This step will correct problems with the 

data, such as: identical column names, columns with zero variance, and missing data. 

    The “View or change missing data imputation settings” option allows you to set the missing 

data imputation method to be used by the software in this step. Missing data imputation can be 

redone after this step, if you later decide to use a different imputation method. To accomplish 

that you should use the option “Redo missing data imputation (via data pre-processing)” under 

the “Modify” menu option. Kock (2014c) and Kock (2018a) provide a detailed discussion of 

missing data imputation methods, as well as of a Monte Carlo simulation comparing the 

methods’ relative performances. 

    This step will also let you know if the data has rank problems, which usually happens when 

the sample size is very small relative to the number of existing indicators. A related cause of rank 

problems is a sample with many repeated or linearly dependent values on different rows or 

columns, which sometimes is an indication of data fabrication. Please note that the term “rank” 

here comes from matrix algebra, and is unrelated to the same term used in the context of ranked 

data, as discussed earlier in connection with the software settings. 

    If there are rank problems, this does not mean that you cannot proceed with the SEM analysis. 

However, the results may be unstable and, in some cases, completely unreliable. On the other 

hand, it is not uncommon for rank problems to be reported and still the results of the ensuing 

SEM analysis turn out to be reliable. This is due to the general robustness methods for SEM 

analysis implemented by this software. 

    At the end of this step, a window will be displayed with the pre-processed data, which will be 

standardized. Standardized data columns have means that equal zero and standard 

deviations that equal one. If you use the Arithmetic Mean Imputation method for dealing with 

missing data (the software’s default), previously missing values will be shown as zero, since they 

were replaced with the averages (or means) of the columns. Standardized data usually ranges 

from -4 to 4, with outliers assuming values toward the left or right end of those extremes, 

sometimes beyond -4 or 4. 

    Outliers can significantly change the shape of a nonlinear relationship, but this may also be the 

case with linear relationships. For example, one single outlier may change the sign of a linear 

association, from positive to negative (i.e., changing the relationship from direct to inverse). 

Because of this, there is invariably the temptation of removing outliers from analyses. This is 

often a mistake (Giaquinta, 2009; Hair et al., 2009; Kock, 2016a), as outliers can be invaluable in 

elucidating the true nature of an association (Kaiser, 2010; Kock, 2011b; Rosenthal & Rosnow, 

1991; Wold et al., 2001). Generally speaking, outliers should only be removed if there are good 

reasons to believe that they are due to measurement error. 

    After the software displays the pre-processed and standardized data, typically you will accept 

the data and move on to the next step. If the data looks corrupted, do not accept it; click on the 

“No” button when asked if the data looks correct. If there are problems in this step, they will 

usually be related to problems with the raw data file. Check that file, and see if you can correct 

those problems. 

    As mentioned before in this manual, one simple test can be used to try to find out if there are 

problems with a raw data file. Try to open it with a spreadsheet program, if it is originally a text 

file; or to try to create a tab-delimited text file with it, if it is originally a spreadsheet file. If you 



WarpPLS User Manual: Version 8.0 

 70 

try to do either of these things, and the data looks “messed up” (e.g., corrupted, or missing 

column names), then it is likely that the original file has problems, which may be hidden from 

view. For example, a spreadsheet file may be corrupted, but that may not be evident based on a 

simple visual inspection of the contents of the file using spreadsheet software.  
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F. Step 4: Define the variables and links in the SEM model 

    In Step 4 you will define the latent variables and links in the SEM model. The sub-steps that 

make up this step are discussed in more detail in the subsections below. This software employs a 

graphical interface that allows users to create and edit model elements visually and directly; i.e., 

without the need of a scripting language. 

    You will define the latent variables by selecting the indicators that are associated with them, 

and the measurement method used – either formative or reflective. The process of defining the 

latent variables in a SEM model in this fashion is often called “defining the outer model”, in 

SEM lingo. 

    Model links can be of two types, direct and moderating links. Direct links connect pairs of 

latent variables. Moderating links connect latent variables and direct links; that is, they refer to 

effects in which a latent variable moderates the relationship between a pair of latent variables. 

The process of defining model links is often referred to as “defining the inner model”.  



WarpPLS User Manual: Version 8.0 

 72 

F.1. Create or edit SEM model 

    The window used to create or edit a model is shown in Figure F.1. A model can be edited if it 

has been created and saved before as part of a project. While editing or creating a model you can 

choose from a number of menu options related to overall model functions, latent variable 

functions, direct link functions, and moderating link functions. As with other windows in this 

software, there is a help menu option that provides access to this manual, displayed as a PDF file. 

The help menu option also provides links to Web resources. 
 

Figure F.1. Create or edit the SEM model window 

 

 
 

    A guiding text box is shown at the top of the model editing and creation window. The content 

of this guiding text box changes depending on the menu option you choose, guiding you through 

the sub-steps related to each option. For example, if you choose the option “Create latent 

variable”, the guiding text box will change color, and tell you to select a location for the latent 

variable on the model graph. 

    Direct links are displayed as full arrows in the model graph, and moderating links as 

dashed arrows. Each latent variable is displayed in the model graph within an oval symbol, 

where its name is shown above a combination of alphanumerical characters with this general 

format: “(F)16i”. The “F” refers to the measurement model; where “F” means formative, and 

“R” reflective. The “16i” reflects the number of indicators of the latent variable, which in this 

case is 16. 

    Save model and close. This option saves the model within the project, and closes the model 

editing and creation window. This option does not, however, save the project file. That is, the 

project file has to be saved for a model to be saved as part of it. This allows you to open a project 

file, change its model, run a SEM analysis, and discard all that you have done, if you wish to do 

so, reverting back to the previous project file. 

    Centralize model graph. This option centralizes the model graph, and is useful when you are 

building complex models and, in the process of doing so, end up making the model visually 
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unbalanced. For example, you may move variables around so that they are all accidentally 

concentrated on the left part of the screen. This option corrects that by automatically redrawing 

all symbols in the model graph so that the center of the model graph coincides with the center of 

the model screen. 

    Show/hide indicators. This option shows or hides the list of indicators for each latent 

variable. The indicators are shown on a vertical list next to each latent variable, and without the 

little boxes that are usually shown in other SEM software. This display option is used to give the 

model graph a cleaner look. It also has the advantage that it saves space in the model graph for 

latent variables. Normally you will want to keep the indicators hidden, except when you are 

checking whether the right indicators were selected for the right latent variables. That is, 

normally you will show the indicators to perform a check, and then hide them during most of the 

model building process. 

    Clear model (deletes all latent variables). This option deletes all latent variables, essentially 

“clearing” the model. Given that choosing this option by mistake can potentially cause some 

serious loss of work (not to mention some major user aggravation), the software shows a dialog 

box asking you to confirm that you want to clear the model before it goes ahead and deletes all 

latent variables. Even if you choose this option by mistake, and confirm your choice also by 

mistake (a double mistake), you can still undo it by choosing the option “Cancel model 

creation/editing (all editing is lost)” immediately after clearing the model. 

    Cancel model creation/editing (all editing is lost). This option cancels the model creation or 

editing, essentially undoing all of the model changes you have made. 

    Save model into .jpg file. This option allows you to save the model graph into a .jpg file. You 

will be asked to select the file name and the folder where the file will be saved. After saved, this 

file can then be viewed and edited with standard picture viewers, as well as included as a picture 

into reports in other files (e.g., a Word file). Users can also generate model graph files by 

copying the model screen into a picture-editing application (e.g., Paint), cropping it to leave out 

unnecessary or unneeded areas, saving it into a picture file (e.g., .jpg or .png), and then importing 

that file into reports. 

    Create latent variable. This option allows you to create a latent variable, and is discussed in 

more detail below. Once a latent variable is created it can be dragged and dropped anywhere 

within the window that contains the model. 

    Edit latent variable. This option allows you to edit a latent variable that has already been 

created, and thus that is visible on the model graph. 

    Delete latent variable. This option allows you to delete an existing latent variable. All links 

associated with the latent variable are also deleted. 

    Move latent variable. This option is rarely used since, once a latent variable is created, it can 

be easily dragged and dropped with the pointing device (e.g., mouse) anywhere within the 

window that contains the model. This option is a carryover from a previous version, maintained 

for consistency and for those users who still want to use it. It allows a user to move a latent 

variable across the model by first clicking on the variable and then on the destination position. 

    Create direct link. This option allows you to create a direct link between one latent variable 

and another. The arrow representing the link points from the predictor latent variable to the 

criterion latent variable. Direct links are usually associated with direct cause-effect hypotheses; 

testing a direct link’s strength (through the calculation of a path coefficient) and statistical 

significance (through the calculation of a P value) is equivalent to testing a direct cause-effect 

hypothesis. 
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    Delete direct link. This option allows you to delete an existing direct link. You will click on 

the direct link that you want to delete, after which the link will be deleted. 

    Delete all direct links. This option deletes all direct links. Given that choosing this option by 

mistake is a possibility, the software shows a dialog box asking you to confirm that you want to 

execute it before it proceeds. Even if you choose this option by mistake, and confirm your choice 

also by mistake, you can still undo it by choosing the option “Cancel model creation/editing (all 

editing is lost)”. 

    Create moderating link. This option allows you to create a link between a latent variable and 

a direct link. With some exceptions, both formative and reflective latent variables can be part of 

moderating links. Arguably this is not possible with the PLS modes M, A and B (see Lohmöller, 

1989; Kock & Mayfield, 2015), which are usually the ones implemented through other PLS-

based SEM software tools. Moderating links are typically associated with moderating cause-

effect hypotheses, or interaction effect hypotheses. Testing a moderating link’s strength (through 

the calculation of a path coefficient) and statistical significance (through the calculation of a P 

value) is equivalent to testing a moderating cause-effect or interaction effect hypothesis. 

Moderating links should be used with moderation (no pun intended), because they may 

introduce multicollinearity into the model, and also because they tend to add nonlinearity to the 

model. By introducing multicollinearity into the model they may make some model parameter 

estimates unstable and biased. 

    By using the menu option “Explore full latent growth” users can completely avoid the above 

problems. This menu option is available from the main software window, and allows you to 

estimate the effects of a latent variable or indicator on all of the links in a model (all at once), 

without actually including any links between the variable and other variables in the model. A full 

latent growth analysis could be seen as a comprehensive analysis of moderating effects where the 

moderating variable is “latent”, in the sense that it does not “disrupt” the model in any way 

(Hubona & Belkhamza, 2021; Kock, 2020a). 

    Delete moderating link. This option allows you to delete an existing moderating link. You 

will click on the moderating link that you want to delete, after which the link will be deleted. 

    Delete all moderating links. This option deletes all moderating links. Given that choosing 

this option by mistake is a possibility, the software shows a dialog box asking you to confirm 

that you want to execute it before it proceeds. Even if you choose this option by mistake, and 

confirm your choice also by mistake, you can still undo it by choosing the option “Cancel model 

creation/editing (all editing is lost)”. 

    After you create a model and choose the option “Save model and close” a wait bar will be 

displayed on the screen telling you that the SEM model structure is being created. This is an 

important sub-step where a number of checks are made. In this sub-step, if there are any 

moderating links in the model, new latent variables are created to store information about those 

moderating effects. You can choose among three options for moderating effects calculation (via 

a different menu option): Two Stages, Variable Orthogonalization, and Indicator Products. The 

default moderating effects calculation option is Two Stages, whereby latent variable scores are 

calculated first and then used in a second stage for the creation of the interaction (or product) 

latent variable that implements the moderating effect.  

    The Indicator Products option uses a product-indicator procedure described and validated by 

Chin et al. (2003). If this option is employed, the more moderating links a model has, the longer 

the model structure creation sub-step will take. In models where only reflective variables are 

involved in a moderating link, typically this sub-step will not take longer than a few seconds. 
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Moderating links with formative variables may lead to longer wait times, because formative 

variables are usually more complex, frequently with significantly more indicators than reflective 

variables. 

    As noted above, instead of the product-indicator approach described by Chin et al. (2003), one 

can use an alternative approach (via the Two Stages option). This two-stage approach can also be 

implemented manually, which might be time-consuming. In the first stage of the manual 

implementation of this alternative approach, the latent variables that are part of a moderating 

relationship will be added to the model as new indicators. This can be done via the options “Add 

one or more latent variable (a.k.a. factor) scores as new standardized indicators” or “Add all 

latent variable (a.k.a. factor) scores as new standardized indicators”, which are available under 

the “Modify” menu options. In the second stage, the new one-indicator latent variables will be 

used in the definition of a moderating relationship. 

    Yet another alternative is to conduct a full latent growth analysis (Hubona & Belkhamza, 

2021; Kock, 2020a). As noted above, users can do this by using the menu option “Explore full 

latent growth”. The “Explore full latent growth” menu option is available from the main 

software window, and allows you to estimate the effects of a latent variable or indicator on all of 

the links in a model (all at once), without actually including any links between the variable and 

other variables in the model. A full latent growth analysis could be seen as a comprehensive 

analysis of moderating effects where the moderating variable is “latent”, in the sense that it does 

not “disrupt” the model in any way (Hubona & Belkhamza, 2021; Kock, 2020a).  
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F.2. Create or edit latent variable 

    The latent variable creation window is show in Figure F.2, and it is virtually identical to the 

latent variable editing window. The latent variable will appear in the model graph as soon as you 

click on the menu option under “Save”, which saves the latent variable and closes the latent 

variable creation or editing window. A latent variable is not saved as part of a project until the 

model is saved as part of the project and the project file is saved. 
 

Figure F.2. Create latent variable window 

 

 
 

    You create a latent variable by entering a name for it, which must have no more than 8 

characters, but to which not many other restrictions apply. The latent variable name may contain 

letters, numbers, and even special characters such as “@” or “$”. It cannot contain the special 

symbols “*” or “:”, however, because these symbols are used later by this software in selected 

outputs to indicate certain conditions (e.g., that a latent variable is associated with a moderating 

effect). After entering a name for a latent variable, you then select the indicators that make up the 

latent variable, and define the measurement model as reflective or formative. 

    A reflective latent variable is one in which all the indicators are expected to be highly 

correlated with one another, and with the latent variable itself (Kock & Mayfield, 2015). For 

example, the answers to certain question-statements by a group of people, measured on a 1 to 7 

scale (1=strongly disagree; 7=strongly agree) and answered after a meal, are expected to be 

highly correlated with the latent variable “satisfaction with a meal”. Among question-statements 

that would arguably fit this definition are the following two: “I am satisfied with this meal”, and 

“After this meal, I feel full”. Therefore, the latent variable “satisfaction with a meal”, can be said 

to be reflectively measured through two indicators. Those indicators store answers to the two 

question-statements. This latent variable could be represented in a model graph as “Satisf”, and 

the indicators as “Satisf1” and “Satisf2”. Notwithstanding this simplified example, users should 

strive to have more than two indicators per latent variable; the more indicators, the better, since 

the number of indicators is inversely related to the amount of measurement error (Kock, 2015b; 

Nunnally, 1978; Nunnally & Bernstein, 1994). 

    A formative latent variable is one in which the indicators are expected to measure certain 

attributes of the latent variable, but the indicators are not expected to be highly correlated with 
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the latent variable itself, because they (i.e., the indicators) are not expected to be highly 

correlated with one another (Kock & Mayfield, 2015). For example, let us assume that the latent 

variable “Satisf” (“satisfaction with a meal”) is now measured using the two following question-

statements: “I am satisfied with the main course” and “I am satisfied with the dessert”. Here, the 

meal comprises the main course, say, filet mignon; and a dessert, such as a fruit salad. Both main 

course and dessert make up the meal (i.e., they are part of the same meal) but their satisfaction 

indicators are not expected to be highly correlated with each other. The reason is that some 

people may like the main course very much, and not like the dessert. Conversely, other people 

may be vegetarians and hate the main course, but may like the dessert very much. 

    If the indicators are not expected to be highly correlated with one another, they cannot be 

expected to be highly correlated with their latent variable’s score. Here is a general rule of thumb 

that can be used to decide if a latent variable is reflectively or formatively measured. If the 

indicators are expected to be highly correlated, and are redundant in their meaning, then the 

measurement model should be set as reflective. If the indicators are not expected to be highly 

correlated, and are clearly not redundant in meaning (they measure different facets of the same 

construct), even though they clearly refer to the same latent variable, then the measurement 

model should be set as formative. 

    Setting a latent variable as formative or reflective affects the calculation of model parameters 

only with the PLS Mode B algorithm, or with algorithms that employ the PLS Mode B algorithm 

or variations of it (e.g., PLS Mode B Basic, PLS Mode M). With other algorithms, setting a 

latent variable as formative or reflective is still recommended, as it helps the user interpret 

outputs and conduct certain assessments (e.g., validity assessments, discussed later in this 

manual). 

    Formative measurement has been facing increasing criticism, particularly since the late 1990s 

(Kock & Mayfield, 2015). See Edwards (2011) for a particularly critical and cogent discussion. 

Given this growing criticism, it is recommended that the Cronbach’s alpha coefficients 

associated with formative latent variables be equal to or greater than 0.6, for reasons related to 

measurement error theory (Kock, 2015b; Nunnally, 1978; Nunnally & Bernstein, 1994). Since 

loadings tend to be relatively low with formative latent variables (and weights relatively high), 

reliability measures (such as the Cronbach’s alpha coefficient) tend to also be relatively low. 

Nevertheless, Cronbach’s alpha coefficients equal to or greater than 0.6 can be achieved by 

increasing the number of indicators used in formative measurement (Kock & Mayfield, 2015).  
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G. Step 5: Perform the SEM analysis and view the results 

    Step 5 performs the SEM analysis based on the model created in Step 4. After you click on the 

button to perform the SEM analysis, the software will show a wait bar. This wait bar will update 

you on the progress of the SEM analysis, which usually will take only a few seconds or less for 

simple to moderately complex models. As soon as the SEM analysis is completed, the software 

will show the results in graphical format on a window. That window also has menu options that 

allow you to view more details about the results, including some that are not shown on the graph 

(e.g., reliability measures), and also save the results into tab-delimited text files. 

    Collinearity is estimated before the SEM analysis is run. If collinearity appears to be too 

high, users are warned about it. A table with estimated latent variable correlations is shown, 

allowing users to identify the possible offending latent variables. If users so choose, they can 

proceed with the analysis anyway, but in most (not all) cases the full collinearity (a.k.a. 

multicollinearity) measures will confirm that collinearity is too high in their models for the 

analysis results to be considered credible. 

    Measurement error and composite weights are estimated before the SEM analysis is run, 

whenever factor-based PLS algorithms are used. Measurement error and composite weights play 

a key role in these algorithms. If at least one measurement error weight is greater than the 

corresponding composite weight, the user is warned about possible unreliability of results. This 

happens usually when at least one of the Cronbach’s alpha coefficients associated with the latent 

variables is lower than 0.5. Foundational aspects of the factor-based PLS algorithms are 

discussed by Kock (2015b; 2019a; 2019b; 2019c; 2023c), and demonstrated empirically by Kock 

(2017; 2019a; 2019b; 2019c). Kock (2015b; 2019b) briefly lays out the mathematical basis of 

these algorithms, from which the importance of measurement error and composite weights can 

be gleaned. 

    New options become available from the main window after Step 5 is completed, under the 

“Modify” menu option. These options allow users to add one or more latent variable scores to 

the model as new standardized indicators, and also to add all latent variable scores as new 

indicators. Adding one or more latent variable scores at a time may be advisable in certain cases, 

such as in hierarchical analyses using selected latent variable scores as indicators at each level. In 

these cases, adding all latent variable scores at once may soon clutter the set of indicators 

available to be used in the SEM model. 

    The option of adding latent variable scores to the model as new standardized indicators is 

useful in the removal of outliers, through the use of restricted ranges for latent variable scores, 

particularly for outliers that are clearly visible on the plots depicting associations among latent 

variables. As briefly mentioned earlier, this option is also useful in hierarchical analyses, where 

users define second-order (and higher order) latent variables, and then conduct analyses with 

different models including latent variables of different orders. 

    New options become available from the main window after Step 5 is completed, under the 

“Explore” menu option, in addition to the option allowing users to estimate statistical power and 

minimum sample size requirements (available before Step 5). These options allow users to view 

T ratios and confidence intervals for various coefficients, estimate complex probabilities via 

conditional probabilistic queries, conduct full latent growth analyses (Kock, 2020a), conduct 

multi-group and measurement invariance analyses, create analytic composites (Kock, 2021a; 

Kock et al., 2018) and instrumental variables that can be used to address endogeneity (Kock, 

2022a) and analyze reciprocal relationships (Kock, 2023a), perform numeric-to-categorical and 
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categorical-to-numeric conversions, view Dijkstra's consistent PLS outputs, view fit indices 

comparing indicator correlation matrices (shown together with other classic model fit and quality 

indices), and view new reliability measures generated in the context of factor-based PLS 

analyses (Kock, 2017; 2019a; 2019b; 2019c; 2020c; 2023c). These menu options are discussed 

individually below. 

    This software uses algorithms that are fairly computing intensive, in some cases employing 

multiple checks and optimization sub-algorithms in each sub-step. Therefore the speed with 

which the analysis is conducted may be a little slower than that of some other publicly available 

SEM software. The differences in speed are not significant though, and normally the results 

generated by this software are more complete, and in many cases more reliable. For example, 

this software calculates model fit and quality indices, as well as P values for most of its 

parameter estimates. Publicly available PLS-based SEM software usually do not provide those 

measures. 

    Some model elements may reduce the speed of the SEM analysis more than others. These 

are: formative latent variables with many indicators and, more generally, latent variables with 

many indicators (even if they are reflective); moderating effects, particularly if they are 

associated with latent variables aggregating many indicators; setting the number of resamples for 

Bootstrapping or Blindfolding as 200 or higher; and using Jackknifing as the resampling method, 

if the sample size is larger than 200. 

    In Jackknifing, the number of resamples equals the sample size, which is why using 

Jackknifing as the resample method may reduce the speed of the SEM analysis with relatively 

large samples. Generating resamples and running calculations on them is one of the most 

computing intensive sub-steps of the SEM analysis. However, Jackknifing often produces more 

stable parameter estimates with warped analysis. So there is a tradeoff between speed and 

reliability when warping algorithms are being used. This tradeoff may tip the balance in favor of 

using Jackknifing, alone or in addition to Bootstrapping or Blindfolding, even if the user has to 

wait longer for the results. 

    An alternative is the use of the “stable” quasi-parametric methods: Stable1, Stable2, and 

Stable3. This alternative is highly recommended, particularly with the Stable3 method, the 

software’s default. As their name implies, these methods yield stable coefficients. They also 

provide fairly accurate estimates of standard errors, which are used in the calculation of P values. 

These methods do not actually generates resamples, so calling them resampling methods is done 

here for simplicity in the grouping of settings options. Because no resamples are generated, these 

are rather efficient methods from a computing load perspective. These methods can be 

particularly useful in the analysis of large datasets, as in these cases creating resamples can be 

computationally very taxing. With the emergence of the concept of “big data”, the need to 

analyze large datasets is becoming increasingly common.  
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H. View and save results 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, which also contains a number of menu options that allow you to view and save 

more detailed results (see Figure H.1.1). The graph with the results shows path coefficients, 

respective P values, and R-squared coefficients. Users can also show or hide indicators weights, 

loadings and names. 
 

Figure H.1.1. View and save results window 

 

 
 

    The “Save” menu options allow users to save most of the results that they can view, with the 

majority of those results saved under the option to save all classic model estimates into a tab-

delimited text file. Additionally, users can save the factor scores calculated for each latent 

variable. These can be useful in some specialized applications; e.g., users may want to generate 

customized graphs based on those scores. 

    Just to be clear, the “factor” scores are the latent variable scores; even though classic PLS 

algorithms approximate latent variables though composites, not factors. This is generally 

perceived as a limitation of classic PLS algorithms (Kock, 2015a; 2015b; 2017; 2019a; 2019b; 

2019c), which is addressed through the factor-based PLS algorithms offered by this software 

(Kock, 2017; 2019a; 2019b; 2019c; 2023c). The latter, factor-based PLS algorithms, estimate 

latent variables through the estimation of the true factors. The term “factor” is often used when 

we refer to latent variables, in the broader context of SEM analyses in general. The reason is that 

factor analysis, from which the term “factor” originates, can be seen as a special case of SEM 

analysis. 

    The path coefficients are noted as beta coefficients. “Beta coefficient” is another term often 

used to refer to path coefficients in PLS-based SEM analyses; this term is commonly used in 

multiple regression analyses as well. The P values are displayed below the path coefficients, 

within parentheses. The R-squared coefficients are shown below each endogenous latent variable 

(i.e., a latent variable that is hypothesized to be affected by one or more other latent variables), 
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and reflect the percentage of the variance in the latent variable that is explained by the latent 

variables that are hypothesized to affect it. To facilitate the visualization of the results, the path 

coefficients and P values for moderating effects are shown in a way similar to the corresponding 

values for direct effects, namely next to the arrows representing the effects.  
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H.1. View general results 

    General SEM analysis results include: the version of WarpPLS used in the SEM analysis; 

project file details, such as the project file name and when the file was last saved; model fit and 

quality indices (shown in Figure H.1.2), which are discussed in more detail below; and general 

model elements, such as the algorithm and resampling method used in the SEM analysis. 
 

Figure H.1.2. General results window 

 

 
 

    Under the project file details, both the raw data path and file are provided. Those are provided 

for completeness, because once the raw data is imported into a project file, it is no longer needed 

for the analysis. Once a raw data file is read, it can even be deleted without any effect on the 

project file, or the SEM analysis. 

    Ten global model fit and quality indices are provided (Kock, 2010; 2014a; 2015d): average 

path coefficient (APC), average R-squared (ARS), average adjusted R-squared (AARS), 

average block variance inflation factor (AVIF), average full collinearity VIF (AFVIF), 

Tenenhaus GoF (GoF), Simpson's paradox ratio (SPR), R-squared contribution ratio 

(RSCR), statistical suppression ratio (SSR), and nonlinear bivariate causality direction 

ratio (NLBCDR). 

    Additional model fit and quality indices are available under the menu option “Explore 

additional coefficients and indices”, which is itself under the “Explore” menu option that is 

available from the main software window. These additional indices allow investigators to assess 

the fit between the model-implied and empirical indicator correlation matrices (Kock, 2020c). 

    For the APC, ARS, and AARS, P values are also provided. These P values are calculated 

through a process that involves resampling estimations coupled with corrections to counter the 

standard error compression effect associated with adding random variables, in a way analogous 

to Bonferroni corrections (Kock, 2011c; 2014a; Rosenthal & Rosnow, 1991). This is necessary 

since the model fit and quality indices are calculated as averages of other parameters. 

    The interpretation of the model fit and quality indices depends on the goal of the SEM 

analysis. If the goal is to only test hypotheses, where each arrow represents a hypothesis, then the 

model fit and quality indices are, as a whole, of less importance. However, if the goal is to find 

out whether one model has a better fit with the original data than another, then the model fit and 

quality indices are a useful set of measures related to model quality. When assessing the model 

fit with the data, several criteria are recommended. These criteria are discussed below, together 

with the discussion of the model fit and quality indices. 

    APC, ARS and AARS. Typically the addition of new latent variables into a model will 

increase the ARS, even if those latent variables are weakly associated with the existing latent 
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variables in the model. However, that will generally lead to a decrease in the APC, since the path 

coefficients associated with the new latent variables will be low. (Here it is important to note that 

the APC is calculated based on the absolute values of the path coefficients.) Thus, the APC and 

ARS will counterbalance each other (Kock, 2010; 2011c), and will only increase together if the 

latent variables that are added to the model enhance the overall predictive and explanatory 

quality of the model. The AARS is generally lower than the ARS for a given model (see, e.g., 

Kock, 2015d). The reason is that it averages adjusted R-squared coefficients (Theil, 1958; 

Wooldridge, 1991), which themselves correct for spurious increases in R-squared coefficients 

due to predictors that add no explanatory value in each latent variable block. It is recommended 

that the P values for the APC, ARS and AARS all be equal to or lower than 0.05; that is, 

significant at the 0.05 level (Kock, 2011c). A more relaxed rule would be that the P values for 

the APC and ARS only be equal to or lower than 0.05. 

    AVIF and AFVIF. The AVIF index will increase if new latent variables are added to the 

model in such a way as to add vertical collinearity in the model’s latent variable blocks. The 

AFVIF index will increase if new latent variables are added to the model in such a way as to add 

full collinearity into the model (i.e., either vertical or lateral collinearity; see Kock & Lynn, 

2012). Full collinearity is often referred to as “muticollinearity”. High AVIF and AFVIF values 

may result from the inclusion of new latent variables that overlap in meaning with existing latent 

variables (Kock, 2021a). It is generally undesirable to have different latent variables in the same 

model that measure the same underlying construct; those should be combined into one single 

latent variable. Thus, the AVIF and AFVIF indices bring in new dimensions that add to a 

comprehensive assessment of a model’s overall predictive and explanatory quality. Because of 

the way in which these indices are calculated (for more details, see: Kock & Lynn, 2012), the 

AFVIF is not sensitive to variations in collinearity due to the use of nonlinear algorithms. The 

AVIF, on the other hand, is sensitive to the use of nonlinear algorithms. Therefore it is 

recommended that both indices, AVIF and AFVIF, be reported in studies, as they are not 

redundant indices. It is recommended (ideally) that both the AVIF and AFVIF be equal to or 

lower than 3.3, particularly in models where most of the variables are measured through 

two or more indicators. A more relaxed (acceptable) criterion is that both indices be equal to 

or lower than 5, particularly in models where most variables are single-indicator variables 

(and thus not “true” latent variables). The reason for these differences in criteria in different 

contexts is that PLS-based SEM algorithms in general tend to be particularly effective at 

reducing collinearity (Kock, 2021a; Kock & Lynn, 2012), but only if multiple indicators are 

available to be aggregated in the calculation of latent variable scores. 

    GoF. Similarly to the ARS, the GoF index, referred to as “Tenenhaus GoF” in honor of 

Michel Tenenhaus, is a measure of a model’s explanatory power (see, e.g., Kock, 2015d). 

Tenenhaus et al. (2005) defined the GoF as the square root of the product between what they 

refer to as the average communality index and the ARS. The communality index for a given 

latent variable is defined as the sum of the squared loadings for that latent variable, each loading 

associated with an indicator, divided by the number of indicators. The average communality 

index for a model is defined similarly, and takes all latent variables into account in its 

calculation. The loadings referred to here are the unrotated loadings, which are available from 

the structure loadings and cross-loadings table. It is also worth noting that the definition of the 

communality index used by Tenenhaus et al. (2005) does not match the typical definition of 

communality, at least as it is normally stated in the context of factor analysis. As noted by 

Wetzels et al. (2009), the average variance extracted (AVE) for each latent variable equals the 
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corresponding communality index. Wetzels et al. (2009) also proposed the following thresholds 

for the GoF: small if equal to or greater than 0.1, medium if equal to or greater than 0.25, 

and large if equal to or greater than 0.36. They did so by assuming a minimum acceptable 

average AVE of 0.5, and using Cohen’s (1988) thresholds for small, medium, and large effect 

sizes. A value lower than 0.1 for the GoF suggests that the explanatory power of a model may be 

too low to be considered acceptable. 

    SPR. The SPR index is a measure of the extent to which a model is free from Simpson’s 

paradox instances (Kock, 2015e; Kock & Gaskins, 2016; Pearl, 2009; Wagner, 1982). An 

instance of Simpson’s paradox occurs when a path coefficient and a correlation associated with a 

pair of linked variables have different signs (Kock, 2015e; Kock & Gaskins, 2016). A Simpson’s 

paradox instance is a possible indication of a causality problem (Kock, 2022b), suggesting that a 

hypothesized path is either implausible or reversed. The SPR index is calculated by dividing the 

number of paths in a model that are not associated with Simpson’s paradox instances by the total 

number of paths in the model. At the time of this writing the SPR was an experimental index, 

and thus the following recommendations should also be treated as experimental. Ideally the SPR 

should equal 1, meaning that there are no instances of Simpson’s paradox in a model; 

acceptable values of SPR are equal to or greater than 0.7, meaning that at least 70 percent of 

the paths in a model are free from Simpson’s paradox (Kock, 2022b). 

    RSCR. The RSCR index is a measure of the extent to which a model is free from negative R-

squared contributions, which occur together with Simpson’s paradox instances (Kock, 2015e; 

Kock & Gaskins, 2016; Pearl, 2009; Wagner, 1982). When a predictor latent variable makes a 

negative contribution to the R-squared of a criterion latent variable (note: the predictor points at 

the criterion), this means that the predictor is actually reducing the percentage of variance 

explained in the criterion. Such a reduction takes into consideration the contributions of all 

predictors plus that of the residual. This index is similar to the SPR. The key difference is that it 

is calculated based on the actual values of the R-squared contributions, not on the number of 

paths where these contributions have specific signs. The RSCR index is calculated by dividing 

the sum of positive R-squared contributions in a model by the sum of the absolute R-squared 

contributions (be they negative or positive) in the model. At the time of this writing the RSCR 

was an experimental index, and thus the following recommendations should also be treated as 

experimental. Ideally the RSCR should equal 1, meaning that there are no negative R-squared 

contributions in a model; acceptable values of RSCR are equal to or greater than 0.9, 

meaning that the sum of positive R-squared contributions in a model makes up at least 90 percent 

of the total sum of the absolute R-squared contributions in the model (Kock, 2022b). 

    SSR. The SSR index is a measure of the extent to which a model is free from statistical 

suppression instances (Kock & Gaskins, 2016; MacKinnon et al., 2000). An instance of 

statistical suppression occurs when a path coefficient is greater, in absolute terms, than the 

corresponding correlation associated with a pair of linked variables. Like a Simpson’s paradox 

instance, a statistical suppression instance is a possible indication of a causality problem (Kock, 

2015e; 2022b, Kock & Gaskins, 2016; Spirtes et al., 1993), suggesting that a hypothesized path 

may be either implausible or reversed. The SSR index is calculated by dividing the number of 

paths in a model that are not associated with medium or greater statistical suppression instances 

by the total number of paths in the model. A medium or greater statistical suppression instance is 

characterized by an absolute path-correlation ratio that is greater than 1.3. At the time of this 

writing the SSR was an experimental index, and thus the following recommendation should also 

be treated as experimental. Acceptable values of SSR are equal to or greater than 0.7, 
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meaning that at least 70 percent of the paths in a model are free from statistical suppression 

(Kock, 2022b). 

    NLBCDR. One interesting property of nonlinear algorithms is that bivariate nonlinear 

coefficients of association vary depending on the hypothesized direction of causality (Kock, 

2021c). That is, they tend to be stronger in one direction than the other, which means that the 

residual (or error) is greater when the hypothesized direction of causality is in one way or 

another. As such, they can be used, together with other coefficients, as partial evidence in 

support or against hypothesized causal links. The NLBCDR index is a measure of the extent to 

which bivariate nonlinear coefficients of association provide support for the hypothesized 

directions of the causal links in a model (Kock, 2022b). The NLBCDR index is calculated by 

dividing the number of path-related instances in a model where the support for the reversed 

hypothesized direction of causality is more than weak by the total number of path-related 

instances involved in this test (this is discussed in more detail later). All of the available 

nonlinear algorithms are used in this test. Therefore the total number of path-related instances 

involved in this test is greater than the total number of paths. At the time of this writing the 

NLBCDR was an experimental index, and thus the following recommendation should also be 

treated as experimental. Acceptable values of NLBCDR are equal to or greater than 0.7, 

meaning that in at least 70 percent of path-related instances in a model the support for the 

reversed hypothesized direction of causality is weak or less. Here “less” may mean that the 

support for reversed hypothesized direction of causality is less than weak (e.g., neutral), or that 

the hypothesized direction of causality is supported (Kock, 2022b).  
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H.2. View path coefficients and P values 

    Path coefficients and respective P values are shown together, as can be seen in Figure H.2. 

Each path coefficient is displayed in one cell, where the column refers to the predictor latent 

variable and the row to the criterion. For example, let us consider the case in which the cell 

shows 0.225, the column refers to the latent variable “ECUVar”, and the row to the latent 

variable “Proc”. This means that the path coefficient associated with the arrow that points from 

“ECUVar” to “Proc” is 0.225. 
 

Figure H.2. Path coefficients and P values window 

 

 
 

    Since the results refer to standardized variables, a path coefficient of 0.225 means that, in a 

linear analysis, a 1 standard deviation variation in “ECUVar” leads to a 0.225 standard deviation 

variation in “Proc”. In a nonlinear analysis, the meaning is generally the same, except that it 

applies to the overall linear trend of the transformed (or warped) relationship (Kock, 2010; 

2016c; 2021c). However, it is important to note that in nonlinear relationships the path 

coefficient at each point of a curve varies (Kock, 2016c). In nonlinear relationships, the path 

coefficient at each point is given by the first derivative of the nonlinear function that describes 

the relationship (Kock, 2016c; Kock & Gaskins, 2016). 

    The P values shown are calculated through one of several methods available, and are thus 

method-specific; i.e., they change based on the P value calculation method chosen. In the 

calculation of P values, a one-tailed test is generally recommended if the coefficient is assumed 

to have a sign (positive or negative), which should be reflected in the hypothesis that refers to the 

corresponding association (Kock, 2015a). Hence this software reports one-tailed P values for 

path coefficients; from which two-tailed P values can be easily obtained if needed (Kock, 

2015a). 

    One puzzling aspect of many publicly available PLS-based SEM software systems is that they 

have historically avoided providing P values, instead providing standard errors and T values, and 

leaving the users to figure out what the corresponding P values are. Often users have to resort to 
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tables relating T to P values, or other software (e.g., Excel), to calculate P values based on T 

values. 

    This is puzzling because typically research reports will provide P values associated with path 

coefficients, which are more meaningful than T values for hypothesis testing purposes (Kock, 

2015a; 2016b). This is due to the fact that P values reflect not only the strength of the 

relationship (which is already provided by the path coefficient itself) but also the power of the 

test, which increases with sample size. The larger the sample size, the lower a path coefficient 

has to be to yield a statistically significant P value.  
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H.3. View standard errors and effect sizes for path coefficients 

    Standard errors and effect sizes for path coefficients are provided in two tables where one 

standard error and effect size is provided for each path coefficient (see Figure H.3). The effect 

sizes provided are similar to Cohen’s (1988) f-squared coefficients, but calculated through a 

different procedure to avoid a distortion inherent in the use of classic PLS-based SEM algorithms 

(Kock, 2014a). Standard errors and effect sizes are provided in the same order as the path 

coefficients, so that users can easily visualize them; and, in certain cases, use them to perform 

additional analyses. 
 

Figure H.3. Standard errors and effect sizes for path coefficients window 

 

 
 

    As noted earlier, even though the effect sizes provided are similar to Cohen’s (1988) f-squared 

coefficients, and have a similar interpretation, they are calculated using a different procedure. 

The reason for this is that the stepwise regression procedure proposed by Cohen (1988) for the 

calculation of f-squared coefficients is generally not compatible with classic PLS-based SEM 

algorithms. The removal of predictor latent variables in latent variable blocks, used in the 

stepwise regression procedure proposed by Cohen (1988), tends to cause changes in the weights 

linking latent variable scores and indicators, thus biasing the effect size measures. 

    The effect sizes are calculated by this software as the absolute values of the individual 

contributions of the corresponding predictor latent variables to the R-squared coefficients of the 

criterion latent variable in each latent variable block. With the effect sizes users can ascertain 

whether the effects indicated by path coefficients are small, medium, or large. The values 

usually recommended are 0.02, 0.15, and 0.35; respectively (Cohen, 1988). Values below 0.02 

suggest effects that are too weak to be considered relevant from a practical point of view, 

even when the corresponding P values are statistically significant; a situation that may occur 

with large sample sizes (Kock, 2014a). 

    Additional types of analyses that may be conducted with standard errors are tests of the 

significance of any mediating effects using the approach discussed by Kock (2014a). This 
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approach consolidates the approaches discussed by Preacher & Hayes (2004), for linear 

relationships; and Hayes & Preacher (2010), for nonlinear relationships. The latter, discussed by 

Hayes & Preacher (2010), assumes that nonlinear relationships are force-modeled as linear; 

which means that the equivalent test using this software would use warped coefficients with the 

earlier linear approach discussed by Preacher & Hayes (2004). Again, for the consolidated 

version of these approaches, see Kock (2014a). The classic approach used for testing mediating 

effects is discussed by Kock (2011b). This approach is a concise version of Baron & Kenny’s 

(1986) classic approach, which does not rely on standard errors. 

    An alternative approach to the analysis of mediating effects, which is arguably much less 

time-consuming and prone to error than the approaches mentioned above, would be to rely on the 

estimation of indirect effects. These indirect effects and related P values are automatically 

calculated by the software, and allow for the test of multiple mediating effects at once, including 

effects with more than one mediating variable. Kock & Gaskins (2014) provide an empirical 

illustration of the use of this approach. Indirect and total effects are discussed in more detail 

later. 

    Another type of analysis that can employ standard errors for path coefficients is what is often 

referred to as a multi-group analysis, where path and measurement model coefficients (usually 

weights) can be compared. One of the main goals of this type of analysis is to compare pairs of 

path coefficients for identical models but based on different samples. An example would be the 

analysis of the same model but with data collected in two different countries. See Kock (2014a) 

for a more detailed discussion on the use of effect sizes and other coefficients generated by this 

software on advanced mediating effects tests, comprehensive multi-group analyses, and 

measurement model assessments. 

    The above steps are significantly simplified by the features available through the menu options 

“Explore multi-group analyses” and “Explore measurement invariance”. These menu options 

allow you to conduct analyses where the data is segmented in various groups, all possible 

combinations of pairs of groups are automatically generated, and each pair of groups is 

compared. The grouping variables can be unstandardized indicators, standardized indicators, and 

labels. The sub-options available for group pair comparison refer to the following methods: 

constrained latent growth, Satterthwaite, and pooled standard error (Kock, 2014a).  
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H.4. View indicator loadings and cross-loadings 

    The “View indicator loadings and cross-loadings” menu options (see Figure H.4.1) allow users 

to view various variations of loadings and cross-loadings (Kock, 2014a): combined loadings and 

cross-loadings, normalized combined loadings and cross-loadings, pattern loadings and cross-

loadings, normalized pattern loadings and cross-loadings, structure loadings and cross-loadings, 

and normalized structure loadings and cross-loadings. 
 

Figure H.4.1. Indicator loadings and cross-loadings options 

 

 
 

    Combined loadings and cross-loadings are shown in a window, as illustrated in Figure 

H.4.2. The same is true for other combinations of loadings and cross-loadings, which are shown 

in similar windows. Combined loadings and cross-loadings are provided in a table with each cell 

referring to an indicator-latent variable link. Latent variable names are listed at the top of each 

column, and indicator names at the beginning of each row. In this table, the loadings are from a 

structure matrix (i.e., unrotated), and the cross-loadings from a pattern matrix (i.e., rotated). 

Indicator types, as defined, are also provided – reflective or formative. 
 

Figure H.4.2. Combined loadings and cross-loadings window 

 

 
 

    In the combined loadings and cross-loadings window, since loadings are from a structure 

matrix, and unrotated, they are always within the -1 to 1 range. With some exceptions, 

which are discussed below, this obviates the need for a normalization procedure to avoid the 

presence of loadings whose absolute values are greater than 1. The expectation here is that for 
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reflective latent variables loadings, which are shown within parentheses, will be high; and cross-

loadings will be low. The type of the latent variable as defined by the user, namely reflective 

or formative, is also provided in this window to facilitate the application of validity and 

reliability tests. The criteria used in these tests are typically different for formative and reflective 

latent variables. 

    P values are provided for indicators associated with all latent variables. These P values 

are often referred to as validation parameters of a confirmatory factor analysis (Kline, 1998; 

Kock, 2014a; Schumacker & Lomax, 2004), since they result from a test of a model where the 

relationships between indicators and latent variables are defined beforehand. Conversely, in an 

exploratory factor analysis (Ehremberg & Goodhart, 1976), relationships between indicators and 

latent variables are not defined beforehand, but inferred based on the results of a factor extraction 

algorithm. The principal components analysis algorithm is one of the most popular of these 

algorithms, even though it is often classified as outside the scope of classic factor analysis. 

Confirmatory factor analyses, instead of exploratory factor analyses, are usually conducted in 

conjunction with SEM analyses. 

    For research reports, users will typically use the table of combined loadings and cross-loadings 

provided by this software when describing the convergent validity of their measurement 

instrument. A measurement instrument has good convergent validity if the question-statements 

(or other measures) associated with each latent variable are understood by the respondents in the 

same way as they were intended by the designers of the question-statements. In this respect, two 

criteria are recommended as the basis for concluding that a measurement model has acceptable 

convergent validity: that the P values associated with the loadings be equal to or lower than 

0.05; and that the loadings be equal to or greater than 0.5 (Amora, 2021; Hair et al., 1987; 

2009; Kock, 2014a). 

    Indicators for which these criteria are not satisfied may be removed. This does not apply to 

formative latent variable indicators, which are assessed in part based on P values 

associated with indicator weights (Kock, 2014a). If the offending indicators are part of a 

moderating effect, then you should consider removing the moderating effect if it does not meet 

the requirements for formative measurement (Kock, 2014a; Kock & Lynn, 2012). Moderating 

effect latent variable names are displayed on the table as product latent variables (e.g., 

Effi*Proc). 

    Moderating effect indicator names are displayed on the table as product indicators (e.g., 

“Effi1*Proc1”). Long names are reduced to avoid a “crowded” look. High P values for 

moderating effects, to the point of being non-significant at the 0.05 level, may suggest 

multicollinearity problems; which can be further checked based on the latent variable 

coefficients generated by the software, more specifically, the full collinearity VIFs (Kock, 

2021a). Some degree of collinearity is to be expected with moderating effects, since the 

corresponding product variables are likely to be correlated with at least their component latent 

variables. Moreover, moderating effects add nonlinearity to models (Kock, 2021c), which can in 

some cases compound multicollinearity problems. Because of these and other related issues, 

moderating effects should be included in models with caution. 

    Standard errors are also provided for the loadings, in the column indicated as “SE”, for 

indicators associated with all latent variables. They can be used in specialized tests. Among other 

purposes, these standard errors can be used in multi-group analyses, with the same model but 

different sub-samples. In these cases, users may want to compare the measurement models to 

ascertain equivalence based on loadings and weights, using a multi-group comparison technique 
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such as the one documented by Kock (2014a) and Keil et al. (2000), and thus ensure that any 

observed between-group differences in structural model coefficients are not due to measurement 

model differences. Keil et al.’s (2000) discussion on multi-group analyses includes an equation 

that contains an error; the correct form of the equation is used in Kock’s (2014a) discussion. The 

equation in question is for the calculation of a pooled standard error, and is one of the two 

equations discussed by Kock (2014a) in the context of multi-group analyses; the other 

implements the alternative Satterthwaite method. According to Keil et al. (2000), the original 

proponent of the pooled standard error equation is Wynne Chin, one of the world’s foremost 

authorities on PLS-based SEM. 

    Normalized loadings and cross-loadings. Normalized versions of the combined, pattern, and 

structure loadings and cross-loadings tables are also provided. In windows showing normalized 

loadings and cross-loadings, a Kaiser normalization is employed to calculate them (Ferguson, 

1981; Kaiser, 1958; Kock, 2014a; Ogasawara, 1999). Through a Kaiser normalization, each row 

of a table of loadings and cross-loadings is divided by the square root of its communality (Kock, 

2014a). This has the effect of making the sum of squared values in each row add up to 1. 

    Using a Kaiser normalization is reasonably standard practice (Ferguson, 1981; Kock, 2014a; 

Ogasawara, 1999). Sometimes the normalization is followed by a de-normalization, which is not 

the case with this software. The normalized values are useful in situations where the PLS 

Regression algorithm is used and some of the latent variables have only 2 indicators, 

particularly with respect to options displaying unrotated loadings. In such cases the 

unrotated loadings in the combined loadings and cross-loadings window that are associated with 

each of the 2 indicators are the same, because with the PLS Regression algorithm the inner 

model does not influence the outer model (Kock & Moqbel, 2016). A Kaiser normalization will 

usually make indicator loadings diverge in value in these cases, in a way that is consistent with 

standard practice and that, some researchers argue, frequently leads to more conservative 

estimates of loadings and cross-loadings (Kock, 2014a). For a more detailed discussion, and a 

review of different perspectives on this topic, see Kock (2014a) and Ogasawara (1999). 

    Pattern loadings and cross-loadings are provided in a table with each cell referring to an 

indicator-latent variable link. Latent variable names are listed at the top of each column, and 

indicator names at the beginning of each row. In this table, both the loadings and cross-loadings 

are from a pattern matrix (i.e., rotated). Since these loadings and cross-loadings are from a 

pattern matrix, they are obtained after the transformation of a structure matrix through a widely 

used oblique rotation frequently referred to as Promax (Kock, 2014a).  

    The structure matrix contains the Pearson correlations between indicators and latent variables, 

which are not particularly meaningful prior to rotation in the context of measurement instrument 

validation. Because an oblique rotation is employed, in some cases loadings may be higher 

than 1 (Kock, 2014a; Rencher, 1998). This could be a hint that two or more latent variables are 

collinear, although this may not necessarily be the case; better measures of collinearity among 

latent variables are the full collinearity VIFs reported with other latent variable coefficients 

(Kock, 2021a; Kock & Lynn, 2012). In the normalized version of this table, typically there 

will be no loadings higher than 1. 

    The main difference between oblique and orthogonal rotation methods is that the former 

assume that there are correlations, some of which may be strong, among latent variables (Kock, 

2014a). Arguably oblique rotation methods are the most appropriate in a SEM analysis, 

because by definition latent variables are expected to be correlated (Kock, 2011b; 2015c). 

Otherwise, no path coefficient would be significant. Technically speaking, it is possible that a 



WarpPLS User Manual: Version 8.0 

 93 

research study will hypothesize only neutral relationships between latent variables, which could 

call for an orthogonal rotation. However, this is rarely, if ever, the case. 

    are provided in a table with each cell referring to an indicator-latent variable link. Latent 

variable names are listed at the top of each column, and indicator names at the beginning of each 

row. In this table, both the loadings and cross-loadings are from a structure matrix (i.e., 

unrotated). Often these are the only loadings and cross-loadings provided by other PLS-based 

SEM software systems. 

    As the structure matrix contains the Pearson correlations between indicators and latent 

variables, this matrix is not particularly meaningful or useful prior to rotation in the context of 

collinearity or measurement instrument validation. Here the unrotated cross-loadings tend to be 

fairly high, even when the measurement instrument passes widely used validity and reliability 

tests. This is generally true for the normalized version of this matrix. 

     Still, some researchers recommend using the structure loadings and cross-loadings table as 

well to assess convergent validity, by following two criteria: that the cross-loadings be lower 

than 0.5; and that the loadings be equal to or greater than 0.5 (Amora, 2021; Hair et al., 1987; 

2009; Kock, 2014a). Note that the loadings here are the same as those provided in the combined 

loadings and cross-loadings table. The cross-loadings, however, are different. Also, these two 

criteria generally apply to the version of this table that is not normalized.  
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H.5. View indicator weights 

    Indicator weights are provided in a table, much in the same way as indicator loadings are (see 

Figure H.5). All cross-weights are zero, because indicators are expected to fully explain the 

variance in the latent variable to which they are associated, either by themselves or together with 

the measurement error associated with the latent variable (Kock, 2015b; Kock & Moqbel, 2016). 

Each latent variable score is calculated as an exactly linear combination of its indicators (Kock & 

Moqbel, 2016), or of its indicators and measurement error (Kock, 2015b), where the weights are 

multiple regression coefficients linking the indicators to the latent variable. 
 

Figure H.5. Indicator weights window 

 

 
 

    As with indicator loadings, standard errors are also provided here for the weights, in the 

column indicated as “SE”, for indicators associated with all latent variables. These standard 

errors can be used in specialized tests. Among other purposes, they can be used in multi-group 

analyses, with the same model but different sub-samples. Here users may want to compare the 

measurement models to ascertain equivalence, using a multi-group comparison technique such as 

the one documented by Kock (2014a), and thus ensure that any observed between-group 

differences in structural model coefficients, particularly in path coefficients, are not due to 

measurement model differences. 

    P values are provided for weights associated with all latent variables. These values can 

also be seen, together with the P values for loadings, as the result of a confirmatory factor 

analysis (Kock, 2014a). In research reports, users may want to report these P values as an 

indication that formative latent variable measurement items were properly constructed. This also 

applies to moderating latent variables that pass criteria for formative measurement, when those 

variables do not pass criteria for reflective measurement. 

    As in multiple regression analysis (Miller & Wichern, 1977; Mueller, 1996), it is 

recommended that weights with P values that are equal to or lower than 0.05 be considered 

valid items in a formative latent variable measurement item subset (Kock, 2014a). Formative 

latent variable indicators whose weights do not satisfy this criterion may be considered for 

removal. 
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    With these P values, users can also check whether moderating latent variables satisfy validity 

and reliability criteria for formative measurement, if they do not satisfy criteria for reflective 

measurement. This can help users demonstrate validity and reliability in hierarchical analyses 

involving moderating effects, where double, triple etc. moderating effects are tested (Kock, 

2011b). For instance, moderating latent variables can be created, added to the model as 

standardized indicators, and then their effects modeled as being moderated by other latent 

variables; an example of double moderation. 

    In addition to P values, variance inflation factors (VIFs) are provided for the indicators of 

all latent variables, including moderating latent variables. These can be used for indicator 

redundancy assessment. In reflective latent variables indicators are expected to be redundant 

(Kock, 2015c). This is not the case with formative latent variables (Kock & Mayfield, 2015). In 

formative latent variables indicators are expected to measure different facets of the same 

construct, which means that they should not be redundant. 

    The VIF threshold of 3.3 has been recommended in the context of PLS-based SEM in 

discussions of formative latent variable measurement (Cenfetelli & Bassellier, 2009; Kock, 

2014a; Petter et al., 2007). A rule of thumb rooted in the use of this software for many SEM 

analyses in the past suggests an even more conservative approach: that capping VIFs to 2.5 for 

indicators used in formative measurement leads to improved stability of estimates (Kock, 

2014a). The multivariate analysis literature, however, tends to gravitate toward higher 

thresholds. Also, capping VIFs at 2.5 or 3.3 may in some cases severely limit the number of 

possible indicators available. Given this, it is recommended that VIFs be capped at 2.5 or 3.3 if 

this does not lead to a major reduction in the number of indicators available to measure formative 

latent variables, and if the Cronbach’s alpha coefficient associated with the formative latent 

variable does not fall below 0.6 (Kock, 2014a). One example would be the removal of only 2 

indicators out of 16 by the use of this rule of thumb, with the Cronbach’s alpha coefficient 

remaining equal to or greater than 0.6. Otherwise, the criteria below should be employed. 

    Two criteria, one more conservative and one more relaxed, are recommended by the 

multivariate analysis literature in connection with VIFs; criteria that can arguably also be used in 

this type of context. More conservatively, it is recommended that VIFs be lower than 5; a 

more relaxed criterion is that they be lower than 10 (Hair et al., 1987; 2009; Kline, 1998; 

Kock, 2014a). High VIFs usually occur for pairs of indicators in formative latent variables, and 

suggest that the indicators measure the same facet of a formative construct. This calls for the 

removal of one of the indicators from the set of indicators used for the formative latent variable 

measurement (Kock & Lynn, 2012). 

    These criteria are generally consistent with formative latent variable theory (see, e.g., 

Diamantopoulos, 1999; Diamantopoulos & Winklhofer, 2001; Diamantopoulos & Siguaw, 2006; 

Kock, 2014a). Among other characteristics, formative latent variables are expected, often by 

design, to have many indicators. Yet, given the nature of multiple regression, indicator weights 

will normally go down as the number of indicators go up, as long as those indicators are 

somewhat correlated (Kock & Gaskins, 2016), and thus P values will normally go up as well. 

Moreover, as more indicators are used to measure a formative latent variable, the likelihood that 

one or more will be redundant increases. This will be reflected in high VIFs (Kock & Lynn, 

2012). 

    Indicator weight-loading signs (WLS) are provided for the indicators of all latent variables. 

A negative WLS (i.e., -1) for an indicator means that the indicator in question is making a 

negative contribution to the R-squared of its latent variable. That is, a negative WLS suggests the 
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existence of a Simpson’s paradox instance (Kock, 2015e; Kock & Gaskins, 2016; Pearl, 2009; 

Wagner, 1982) in the outer model, associated with a specific indicator assigned to a latent 

variable. A Simpson’s paradox instance in this context is a possible indication of a causality 

problem, suggesting that a hypothesized link between an indicator and a latent variable is either 

implausible or reversed (Kock, 2015e; Kock & Gaskins, 2016). Therefore, it is recommended 

that all indicator WLS values be positive, for both formative and reflective latent variables 

(Kock, 2014a). Indicators associated with negative WLS values may be considered for removal. 

    Effect sizes are provided in the column indicated as “ES” for the indicators of all latent 

variables. As with the effect sizes for paths, the effect sizes for indicators are calculated as the 

absolute values of the individual contributions of the corresponding indicators to the R-squared 

coefficients of the latent variable to which each indicator is associated. Similarly to the effect 

sizes for paths, with the indicator effect sizes users of this software can ascertain whether the 

indicator effects are small, medium, or large. The values usually recommended are 0.02, 0.15, 

and 0.35; respectively (Cohen, 1988; Kock, 2014a). Values below 0.02 suggest effects that are 

too weak to be considered relevant from a practical point of view, even when the corresponding 

P values are statistically significant. It is recommended that all indicator effect sizes be equal 

to or greater than 0.02, for both formative and reflective latent variables (Kock, 2014a). 

Indicators with effect sizes that do not meet this criterion may be considered for removal.  
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H.6. View latent variable coefficients 

    Several estimates are provided for each latent variable; these can be used in research reports 

for discussions on the measurement instrument’s reliability, discriminant and predictive validity, 

as well as overall collinearity (see Figure H.6). R-squared, adjusted R-squared, and Q-squared 

coefficients are provided only for endogenous latent variables; and reflect the percentages of 

explained variance and predictive validity associated with each of those latent variables, 

respectively. Composite reliability and Cronbach’s alpha coefficients are provided for all latent 

variables. Also provided for all latent variables are: numbers of different values, the ratios 

between the numbers of different values and sample size, minimum and maximum values, 

medians, modes, skewness and excess kurtosis coefficients, results of unimodality and normality 

tests, and histograms. Means and standard deviations are not shown because latent variables 

are standardized; i.e., they all have a mean of 0 and a standard deviation of 1. 
 

Figure H.6. Latent variable coefficients window 

 

 
 

    Composite reliability and Cronbach’s alpha coefficients are measures of reliability. Serious 

questions have been raised regarding Cronbach’s alpha’s (Cronbach, 1951; Kline, 2010; Kock, 

2015b) psychometric properties (Sijtsma, 2009). However, while the Cronbach’s alpha 

coefficient is reported by this software, and the some of the factor-based PLS algorithms employ 

it as a basis for the estimation of measurement error and composite weights, no assumptions are 

made about the coefficient’s main purported psychometric properties that have been the target of 

criticism (Kock, 2015b; 2017). This is an important caveat in light of measurement error theory 

(Kock, 2015b; Nunnally & Bernstein, 1994). Users should also keep in mind that an alternative 

and generally more acceptable reliability measure is available, the composite reliability 

coefficient (Dillon & Goldstein, 1984; Peterson & Yeolib, 2013). Composite reliability 

coefficients are also known as Dillon–Goldstein rho (Tenenhaus et al., 2005) and congeneric 

reliability (a.k.a. rho_C) coefficients (Raykov, 1997). 



WarpPLS User Manual: Version 8.0 

 98 

    Average variances extracted (AVEs) and full collinearity variance inflation factors (VIFs) are 

also provided for all latent variables; and are used in the assessment of discriminant validity and 

overall collinearity, respectively (Kock, 2021a; Kock & Lynn, 2012). 

    Adjusted R-squared coefficients (Theil, 1958; Wooldridge, 1991) are equivalent to R-squared 

coefficients, with the key difference that they correct for spurious increases in R-squared 

coefficients due to predictors that add no explanatory value in each latent variable block. 

Consistently with general recommendations made by Cohen (1988; see, also, Kock, 2014a), 

values of R-squared coefficients and adjusted R-squared coefficients below 0.02 suggest 

combined effects of predictors in latent variable blocks that are too weak to be considered 

relevant from a practical point of view. Therefore, models where R-squared coefficients or 

adjusted R-squared coefficients are below 0.02 should be considered for revision, as the 

explanatory power in sub-models (i.e., latent variable blocks) is below reasonable expectations. 

Revisions in these models could involve inner and outer model changes, such as removal or 

change in location of mediating latent variables as well as removal or reassignment of indicators. 

    The following criteria, one more conservative and the other two more relaxed, are suggested in 

the assessment of the reliability of a measurement instrument. These criteria apply only to 

reflective latent variable indicators. Reliability is a measure of the quality of a measurement 

instrument; the instrument itself is typically a set of question-statements. A measurement 

instrument has good reliability if the question-statements (or other measures) associated with 

each latent variable are understood in the same way by different respondents. 

    More conservatively, both the composite reliability and the Cronbach’s alpha coefficients 

should be equal to or greater than 0.7 (Fornell & Larcker, 1981; Nunnaly, 1978; Nunnally & 

Bernstein, 1994; Kock, 2014a; Kock & Lynn, 2012). The more relaxed version of this criterion, 

which is widely used, is that one of the two coefficients should be equal to or greater than 0.7 

(Kock & Lynn, 2012). This typically applies to the composite reliability coefficient, which is 

usually the higher of the two (Fornell & Larcker, 1981; Kock & Lynn, 2012). An even more 

relaxed version sets this threshold at 0.6 (Nunnally & Bernstein, 1994; Kock & Lynn, 2012). If a 

latent variable does not satisfy any of these criteria, the reason will often be one or a few 

indicators that load weakly on the latent variable. These indicators should be considered for 

removal (Kock & Lynn, 2012). 

    AVEs are normally used for discriminant validity assessment and, less commonly, for 

convergent validity assessment. For discriminant validity assessment, AVEs are used in 

conjunction with latent variable correlations. This is discussed in more detail later, together with 

the discussion of the table of correlations among latent variables that includes square roots of 

AVEs. For convergent validity assessment, the AVE threshold frequently recommended for 

acceptable validity is 0.5 (Amora, 2021; Fornell & Larcker, 1981; Kock & Lynn, 2012), and 

applies only to reflective latent variables. 

    Full collinearity VIFs are shown for all latent variables, separately from the VIFs calculated 

for predictor latent variables in individual latent variable blocks. These VIFs are calculated based 

on a full collinearity test (Kock & Lynn, 2012), which enables the identification of not only 

vertical but also lateral collinearity, and allows for a test of collinearity involving all latent 

variables in a model (Kock, 2021a). Vertical, or classic, collinearity is predictor-predictor latent 

variable collinearity in individual latent variable blocks. Lateral collinearity is a term coined by 

Kock & Lynn (2012) that refers to predictor-criterion latent variable collinearity; a type of 

collinearity that can lead to particularly misleading results. Full collinearity VIFs can also be 

used for common method bias tests (Kock, 2015c; 2021a; 2023c; Kock & Lynn, 2012; Lindell 
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& Whitney, 2001) that are more conservative than, and arguably superior to, the traditionally 

used tests relying on exploratory and confirmatory factor analyses. One traditionally used check 

is Harman’s single factor test, which can also be easily done using the software (Kock, 2021b). 

    A rule of thumb rooted in the use of this software for many SEM analyses in the past suggests 

that full collinearity VIFs of 3.3 or lower suggest the existence of no multicollinearity in the 

model and no common method bias (Kock, 2015c; 2023c; Kock & Lynn, 2012). This is also 

the recommended threshold for VIFs for latent variables in PLS-based SEM (Kock & Lynn, 

2012) and also in slightly different contexts (Cenfetelli & Bassellier, 2009; Kock, 2014a; Petter 

et al., 2007). On the other hand, two criteria, one more conservative and one more relaxed, are 

recommended by the multivariate analysis literature in connection with VIFs. They may apply in 

this type of context as well; although they may be more adequate in path analyses (Kock et al., 

2022), where all latent variables are measured through single indicators. More conservatively, it 

is recommended that VIFs be lower than 5; a more relaxed criterion is that they be lower 

than 10 (Hair et al., 1987; 2009; Kline, 1998; Kock, 2014a; 2021a). 

    Q-squared coefficients are also known as Stone-Geisser Q-squared coefficients (Kock, 

2015d; Kock & Gaskins, 2014), so named after their principal original proponents (Geisser, 

1974; Stone, 1974). The Q-squared coefficient is a nonparametric measure traditionally 

calculated via blindfolding. It is used for the assessment of the predictive validity (or relevance) 

associated with each latent variable block in the model, through the endogenous latent variable 

that is the criterion variable in the block (Kock, 2015d; Kock & Gaskins, 2014). The Q-squared 

coefficient is sometimes referred to as a resampling analog of the R-squared coefficient. It is 

often similar in value to that measure; even though the Q-squared coefficient can more easily 

assume negative values. Acceptable predictive validity in connection with an endogenous 

latent variable is suggested by a Q-squared coefficient greater than zero. 

    The unimodality tests for which results are provided are the Rohatgi- Székely test (Rohatgi & 

Székely, 1989) and the Klaassen-Mokveld-van Es test (Klaassen et al., 2000). The normality 

tests for which results are provided are the classic Jarque-Bera test (Jarque & Bera, 1980; Bera 

& Jarque, 1981) and Gel & Gastwirth’s (2008) robust modification of this test. Since these tests 

are applied to latent variables, which are combinations either of indicators or of indicators and 

measurement errors, the outcomes of these tests can be seen as “multivariate” unimodality 

and normality test results. 

    Both unimodality and normality test results take the form of a “Yes” or “No”, meaning that 

the latent variable distributions are or are not, respectively, unimodal or normal. No unimodality 

or normality for at least one latent variable (or indicator) is usually seen as a sign that the 

nonparametric methods used in this software are particularly appropriate. That is, users of this 

software can justify employing it by noting that not all latent variables are unimodal and normal. 

It is noteworthy that the non-normality justification for the use of non-parametric PLS-based 

SEM methods has been widely employed in the past, arguably correctly since these methods 

seems to be fairly robust to univariate and multivariate deviations from normality (Kock, 2016a), 

but typically without any accompanying test of normality!  



WarpPLS User Manual: Version 8.0 

 100 

H.7. View correlations among latent variables and errors 

    The “View correlations among latent variables and errors” menu options (see Figure H.7.1) 

allow users to view tables containing correlations among latent variables, the P values associated 

with those correlations, square roots of AVEs, correlations among latent variable error terms (or 

residuals), and the VIFs associated with latent variable error terms (see figures H.7.2 and H.7.3). 
 

Figure H.7.1. Correlations among latent variables and errors options 

 

 
 

Figure H.7.2. Correlations among latent variables with square roots of AVEs 

 

 
 

Figure H.7.3. Correlations among latent variable error terms with VIFs 

 

 
 

    In most research reports, users will typically show the table of correlations among latent 

variables, with the square roots of the average variances extracted on the diagonal, to 

demonstrate that their measurement instruments pass widely accepted criteria for discriminant 

validity assessment. A measurement instrument has good discriminant validity if the question-

statements (or other measures) associated with each latent variable are not confused by the 

respondents answering the questionnaire with the question-statements associated with other 

latent variables, particularly in terms of the meaning of the question-statements. 

    The following criterion is recommended for discriminant validity assessment: for each latent 

variable, the square root of the average variance extracted should be higher than any of the 

correlations involving that latent variable (Fornell & Larcker, 1981; Kock, 2015c; Kock & 

Lynn, 2012). That is, the values on the diagonal of the table containing correlations among latent 

variables, which are the square roots of the average variances extracted for each latent variable, 

should be higher than any of the values above or below them, in the same column. Or, the values 

on the diagonal should be higher than any of the values to their left or right, in the same row; 

which means the same as the previous statement, given the repeated values of the latent variable 

correlations table. 

    The above criterion applies to reflective and formative latent variables, as well as product 

latent variables representing moderating effects. If it is not satisfied, the culprit is usually an 

indicator that loads strongly on more than one latent variable. Also, the problem may involve 
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more than one indicator. You should check the loadings and cross-loadings tables to see if you 

can identify the offending indicator or indicators, and consider removing them. 

    Second to latent variables involved in moderating effects, formative latent variables are the 

most likely to lead to discriminant validity problems. This is one of the reasons why formative 

latent variables are not used as often as reflective latent variables in empirical research. In fact, it 

is wise to use formative variables sparingly in models that will serve as the basis for SEM 

analysis. Formative variables can in many cases be decomposed into reflective latent variables, 

which themselves can then be added to the model. Often this provides a better understanding of 

the empirical phenomena under investigation (Edwards, 2011), in addition to helping avoid 

discriminant validity problems. 

    A table with correlations among latent variable error terms containing VIFs associated 

with the error terms on the diagonal is also provided. This table may be useful in identifying 

error terms that are highly correlated, which suggest the existence of confounders. More 

specifically, if a latent variable A points at a latent variable B, and the error terms (e)A and (e)B 

are strongly correlated, then this may be an indication of the existence of a hidden confounder. 

This hidden confounder may be the real cause behind a significant association between A and B, 

suggesting a causality problem (Kock, 2022b); namely one in which a link may in fact not be a 

“true” causal link but rather be due to a third variable, the confounder. Particularly problematic 

are situations in which error terms are so highly correlated that they can be considered redundant, 

which are indicated by high VIFs in the diagonal of this table. To rule out these situations, and 

consistently with recommendations by Kock & Lynn (2012), it is recommended that the VIFs 

associated with the error terms be equal to or lower than 3.3.  
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H.8. View block variance inflation factors 

    Block variance inflation factors (VIFs) are provided in table format (see Figure H.8) for each 

latent variable that has two or more predictors in a latent variable block. Block VIFs cannot be 

calculated for latent variables with only one predictor or no predictor. Here each VIF is 

associated with one of the two or more predictors, and relates to the link between that predictor 

and its latent variable criterion. (When one predictor latent variable points at two or more 

different latent variables in the model, then that latent variable is said to have multiple criteria 

associated with it.) 
 

Figure H.8. Block variance inflation factors window 

 

 
 

    In this context, a VIF is a measure of the degree of “vertical” collinearity (Kock & Lynn, 

2012), or redundancy, among the latent variables that are hypothesized to affect another latent 

variable. This classic type of collinearity refers to predictor-predictor collinearity in a latent 

variable block containing one or more latent variable predictors and one latent variable criterion 

(Kock & Lynn, 2012). For example, let us assume that there is a block of latent variables in a 

model, with three latent variables A, B, and C (predictors) pointing at latent variable D. In this 

case, VIFs are calculated for A, B, and C, and are estimates of the multicollinearity among these 

predictor latent variables.  

    A rule of thumb rooted in the use of this software for many SEM analyses in the past, as well 

as past methodological research, suggests that block VIFs of 3.3 or lower suggest the existence 

of no vertical multicollinearity in a latent variable block (Kock & Lynn, 2012). This is also 

the recommended threshold for VIFs in slightly different contexts (Cenfetelli & Bassellier, 2009; 

Kock, 2015c; Petter et al., 2007). On the other hand, two criteria, one more conservative and one 

more relaxed, are also recommended by the multivariate analysis literature, and can also be seen 

as applicable in connection with VIFs in this context.  

    More conservatively, it is recommended that block VIFs be lower than 5; a more relaxed 

criterion is that they be lower than 10 (Hair et al., 1987; 2009; Kline, 1998; Kock & Lynn, 

2012). These criteria may be particularly relevant in the context of classic path analyses (Kock 

& Lynn, 2012; Kock et al., 2022), where all latent variables are measured through single 

indicators (technically, these are not “true” latent variables). The reason why these criteria may 

be particularly relevant in the context of path analyses is that, without multiple indicators per 

latent variable, the PLS-based SEM algorithms do not have the “raw material” that they need to 

reduce collinearity (Kock & Lynn, 2012; Kock et al., 2022). PLS-based SEM algorithms are 

particularly effective at reducing collinearity, but chiefly when “true” latent variables are 

present; that is, when latent variables are measured through multiple indicators. 

    High block VIFs usually occur for pairs of predictor latent variables, and suggest that the 

latent variables measure the same construct. If this is not due to indicator assignment problems, it 
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would arguably call for the removal of one of the latent variables from the block, or from the 

model (Kock & Lynn, 2012).  
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H.9. View correlations among indicators 

    The software allows users to view the correlations among all indicators included in the model, 

in table format. Only the correlations for indicators included in the model are shown through the 

menu option “View correlations among indicators”, available from the “View and save results” 

window. The term “indicator” is frequently used as synonymous with that of “manifest variable”, 

a convention that is used in this document. More technically, however, indicators are manifest 

variables that are actually used in the measurement model as direct measures of latent variables. 

Thus there can be manifest variables in the dataset that are not indicators, if the manifest 

variables are not included in the measurement model. 

    This option is useful for users who want to run a quick check on the correlations among 

indicators while they are trying to identify possible sources of multicollinearity. This option may 

also be useful in the identification of candidate indicators for latent variables through the anchor 

variable procedure developed by Kock & Verville (2012). 

    The table of correlations among indicators used in the model is usually much larger, with 

many more columns and rows, than that of the correlations among latent variables. For this 

reason, the P values for the correlations are not shown in the screen view option together with the 

correlations, but are saved in the related tab-delimited text file. 

    To save correlations among all indicators and respective P values, including those indicators 

not included in the model, use the menu option “Data”, and the appropriate sub-options therein. 

As noted above, indicators that are not included in the model are not technically “true” 

indicators. Nevertheless, they do fall under the more general term “manifest variables”; as they 

are directly measured, and thus not “latent”, variables. They refer to the columns of the original 

dataset. 

    The menu option for saving correlations among all manifest variables, which refer to all 

columns of the original dataset, is available from the main software window under “Data”, after 

Step 3 is completed. This option is generally more meaningful for users who want to include the 

correlations among manifest variables in their research reports, as part of a descriptive statistics 

table, and for users employing the anchor variable procedure developed by Kock & Verville 

(2012). This option also generates means, standard deviations, and other descriptive statistics for 

each of the manifest variables. Manifest variables that are not used in the model, and that thus 

are not “true” indicators, may simply be deleted prior to the inclusion in a research report.  
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H.10. View/plot linear and nonlinear relationships among latent variables 

    Choosing the menu option “View/plot linear and nonlinear relationships among latent 

variables” causes the software to show a table with the types of relationships, warped or linear, 

between latent variables that are linked in the model (see Figure H.10.1). The term “warped” is 

used for relationships that are clearly nonlinear, and the term “linear” for linear or quasi-linear 

relationships. Quasi-linear relationships are slightly nonlinear relationships, which look linear 

upon visual inspection on plots of the regression curves that best approximate the relationships. 
 

Figure H.10.1. Linear and nonlinear (“warped”) relationships among latent variables window 

 

 
 

Figure H.10.2. Graph options for direct effects including one with points and best-fitting curve 

 

 
 

    Several graphs (a.k.a. plots) for direct effects can be viewed by clicking on a cell containing a 

relationship type description. These cells are the same as those that contain path coefficients, in 

the path coefficients table that was shown earlier. Among the options available are graphs 

showing the points as well as the curves that best approximate the relationships (see Figure 

H.10.2).  
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H.10.1. Graphs for direct effects 

    The “View focused relationship graphs” options allow users to view graphs that focus on the 

best-fitting line or curve and that exclude data points to provide the effect of zooming in on the 

best-fitting line or curve area. The options available are: “View focused multivariate 

relationship graph (standardized scales)”, “View focused multivariate relationship graph 

(unstandardized scales)”, “View focused bivariate relationship graph (standardized 

scales)”, and “View focused bivariate relationship graph (unstandardized scales)”. 

    The options above, like other direct effects graph options discussed here, combine variations 

in terms of two main aspects: whether the scales are standardized or unstandardized, and 

whether the graphs refer to multivariate or bivariate relationships. 

    By default, latent variable scores are standardized aggregations of indicators. The latter, 

namely the indicators, are originally in unstandardized format. Therefore, to obtain the 

unstandardized equivalents of the latent variable scores, some decisions must be made and extra 

calculations performed. The unstandardized equivalents of latent variable scores are always 

approximations. 

    Unstandardization of scales for latent variable scores, whereby standardized scales are 

converted to their unstandardized equivalents, is based on the unstandardization option chosen 

by the user using the “Settings” menu option. Three unstandardization options are available: 

“Highest loading indicator”, the default option, whereby the mean and standard deviation of the 

highest loading indicator is used in the unstandardization; “Average of indicators”, whereby the 

mean and standard deviation of the average of indicators is used; and “Weighted average of 

indicators”, whereby the mean and standard deviation of the weighted average of indicators is 

used. 

    Through the “Settings” menu option the user can also set the graph title, the X axis label, 

and the Y axis label. The graph title is the text shown at the top of the graph. The X axis label is 

the text shown next to the X axis, or the horizontal axis. The Y axis label is the text shown next 

to the Y axis, or the vertical axis. 

    Multivariate and bivariate relationship graphs usually differ only when two or more 

predictor latent variables point at one criterion latent variable in a latent variable block. The 

addition of predictors will normally reduce the path coefficients in a latent variable block. 

Because of this, typically a multivariate relationship graph will have a lower overall 

inclination (or steepness) than its corresponding bivariate relationship graph. However, this 

is not always the case. In statistical suppression instances (Kock & Gaskins, 2016; MacKinnon 

et al., 2000), a multivariate relationship graph will have a greater overall inclination than 

its corresponding bivariate relationship graph. In Simpson’s paradox instances (Kock, 2015e; 

Kock & Gaskins, 2016; Pearl, 2009; Wagner, 1982), multivariate and bivariate relationship 

graphs will have reversed overall inclinations – e.g., one will be positive and the other 

negative. 

    This software is arguably the first and only, at the time of this writing, to provide both 

multivariate and bivariate representations of nonlinear relationships. The mathematics underlying 

the rendering of these representations is complex and somewhat novel. Therefore, these 

representations should be treated as experimental by users of this software, and any conclusions 

derived from visual inspection of these representations should be treated with caution. 

    The “View focused relationship graphs with segments” options allow users to view graphs 

that focus on the best-fitting line or curve, that exclude data points to provide the effect of 

zooming in on the best-fitting line or curve area, and that show curves as linear segments (Kock, 
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2016c). The segments are shown with their respective beta coefficients and with or without P 

values. The options available are: “View focused multivariate relationship graph with 

segments (standardized scales)”, “View focused multivariate relationship graph with 

segments (standardized scales, P values)”, “View focused multivariate relationship graph 

with segments (unstandardized scales)”, “View focused bivariate relationship graph with 

segments (standardized scales)”, “View focused bivariate relationship graph with segments 

(standardized scales, P values)”, and “View focused bivariate relationship graph with 

segments (unstandardized scales)”. 

    The number of segments shown in the graphs above depends on the absolute effect 

segmentation delta chosen by the user through the “Settings” menu option. This absolute effect 

segmentation delta is the change (or delta) threshold in the first derivative of the nonlinear 

function depicting the relationship before a new segment is started (Kock, 2016c; 2021c). For 

example, a delta of 0.1 means that in each segment the first derivative of the nonlinear function 

depicting the relationship does not vary more than 0.1. Since the first derivative does not change 

in linear relationships, segmentation only occurs in nonlinear relationships. This graph 

segmentation option allows for the identification of unobserved heterogeneity (Kock, 2016c; 

2021c; Sarstedt & Ringle, 2010) without a corresponding reduction in sample size, providing an 

alternative to data segmentation approaches such as FIMIX-PLS (Hahn et al., 2002; Kock, 

2016c; 2021c). 

    The “View relationship graphs with data points” options allow users to view graphs with 

the best-fitting lines or curves and the data points used to produce the best-fitting lines or curves. 

These options show all the data points, and thus do not provide the effect of zooming in on the 

best-fitting line or curve area. The options available are: “View multivariate relationship 

graph with data points (standardized scales)”, “View multivariate relationship graph with 

data points (unstandardized scales)”, “View bivariate relationship graph with data points 

(standardized scales)”, and “View bivariate relationship graph with data points 

(unstandardized scales)”. 

    The “View relationship graphs with data points and legends” options allow users to view 

graphs with the best-fitting lines or curves, the data points used to produce the best-fitting lines 

or curves, and legends associated with data labels. These options show all the data points, and 

thus do not provide the effect of zooming in on the best-fitting line or curve area. They are useful 

in cases where many data points are available, because in these cases showing legends instead 

of data labels next to points avoids graph crowding (Kock, 2014d). The options available are: 

“View multivariate relationship graph with data points and legends (standardized scales)”, 

“View multivariate relationship graphs with data points and legends (unstandardized 

scales)”, “View bivariate relationship graph with data points and legends (standardized 

scales)”, and “View bivariate relationship graphs with data points and legends 

(unstandardized scales)”. 

    The “View relationship graphs with data points and labels” options allow users to view 

graphs with the best-fitting lines or curves, the data points used to produce the best-fitting lines 

or curves, and data labels next to the data points to which they refer. These options show all the 

data points, and thus do not provide the effect of zooming in on the best-fitting line or curve area. 

They are useful in cases where few data points are available, because in these cases showing 

data labels next to points provides a clear picture of what each data point refers to without graph 

crowding (Kock, 2014d). The options available are: “View multivariate relationship graph 

with data points and labels (standardized scales)”, “View multivariate relationship graphs 
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with data points and labels (unstandardized scales)”, “View bivariate relationship graph 

with data points and labels (standardized scales)”, and “View bivariate relationship graphs 

with data points and labels (unstandardized scales)”. 

    As mentioned earlier in this manual, the Warp2 and the Warp2 Basic algorithms try to identify 

a U-curve relationship between each pair of predictor-criterion latent variables, and, if that 

relationship exists, the algorithm used transforms (or “warps”) the scores of the predictor latent 

variables so as to better reflect the U-curve relationship in the estimated path coefficients in the 

model. The Warp3 and the Warp3 Basic algorithms, the former being the default algorithm used 

by this software, try to identify a relationship defined by a function whose first derivative is a U-

curve. This type of relationship follows a pattern that is more similar to an S-curve (or a 

somewhat distorted S-curve), and can be seen as a combination of two connected U-curves, one 

of which is inverted. 

    Sometimes a Warp3-based analysis will lead to results that tell you that a relationship between 

two latent variables has the form of a U-curve or a line, as opposed to an S-curve. Similarly, 

sometimes a Warp2-based analysis will tell you that a relationship has the form of a line. This is 

because the underlying algorithms find the type of relationship that best fits the distribution of 

points associated with a pair of latent variables, and sometimes those types are not S-curves or 

U-curves (Kock, 2010; 2011b).  
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H.10.2. Graphs for moderating effects 

    As with direct effects, several graphs (a.k.a. plots) for moderating effects can be viewed 

by clicking on a cell containing a relationship type description. These cells are the same as those 

that contain path coefficients, in the path coefficients table that was shown earlier. Their column 

labels are displayed on the table as product latent variables (e.g., Effi*Proc). In this example, 

namely Effi*Proc, the latent variable Effi is hypothesized to moderate the relationship between 

Proc and another latent variable, where Proc points at the third latent variable. The third latent 

variable is listed in the corresponding row label. Among the options available are 3-dimensional 

(3D) graphs showing the points as well as the surfaces that best approximate the relationships 

(see Figure H.10.2.1). 
 

Figure H.10.2.1. Graph options for moderating effects including 3D graph with points and best-fitting surface 

 

 
 

    Moderating relationships involve three latent variables, the moderating variable and the pair of 

variables that are connected through a direct link. The sign and strength of a path coefficient 

for a moderating relationship refer to the effect of the moderating variable on the sign and 

strength of the path for the direct relationship that it moderates (Kock, 2016d). For example, 

if the path for the direct relationship has its sign going from negative to positive and becomes 

significantly stronger in that direction as one moves from the low to the high range of the 

moderating variable, then the sign of the path coefficient for the corresponding moderating 

relationship will be positive and the path coefficient will be relatively high; possibly high enough 

to yield a statistically significant effect. 

    No moderating relationship graph currently available from this software accurately represents 

the true nature of a moderating relationship. This comment seems to apply to all other publicly 

available SEM software tools; to the best of our knowledge, and at the time of this writing. 

Therefore various graphs are provided so that users can choose the one that in their view best 
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illustrates the relationship. An accurate representation of a moderating relationship would be 

that of a multivariate distortion in the surface representing the relationship. The distortion 

refers to a “twisting” of the surface around the moderating variable axis, with a multivariate 

adjustment, and with corresponding changes in the overall inclinations of the sections of the 

surface representing the direct effect being moderated. The mathematical underpinnings of such 

representation were still under development at the time of this writing, and may be available for 

implementation in future versions of this software.  
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H.10.2.1. Graphs in 3D for moderating effects 

    The “View moderating relationship in one rocky 3D graph” options allow users to view 3D 

graphs where the surfaces are generated through Delaunay triangulations (Chew, 1989; Lee & 

Schachter, 1980; Kock, 2016d) without smoothing. Surfaces can be viewed with data points 

excluded or included. The displays with data points excluded are analogous to those used in the 

focused 2D graphs (discussed later). The options to view surfaces with data points excluded are: 

“View rocky 3D graph for moderating effect (standardized scales)” and “View rocky 3D 

graph for moderating effect (unstandardized scales)”. The options to view surfaces with data 

points included are: “View rocky 3D graph for moderating effect with data points 

(standardized scales)”, and “View rocky 3D graph for moderating effect with data points 

(unstandardized scales)”. 

    The “Rotate” menu option allows the user to rotate a 3D graph up, down, left, and right. 

Through the “Settings” menu option the user can set the following 3D graph options: the 

graph title, the moderating variable (M) axis label, the X axis label, and the Y axis label. 

The graph title is the text shown at the top of the graph. The M axis label is the text shown next 

to the moderating variable axis. The X axis label is the text shown next to the X axis, or the 

predictor variable axis. The Y axis label is the text shown next to the Y axis, or the criterion 

variable axis. 

    The “View moderating relationship in one smooth 3D graph with data points” options 

allow users to view 3D graphs where the surfaces are generated through Delaunay triangulations 

(Chew, 1989; Lee & Schachter, 1980; Kock, 2016d) with smoothing. Because the surfaces are 

generated with smoothing, they sometimes resemble more bed sheets than rocky mountain 

formations. Surfaces can be viewed with data points excluded or included. The options to view 

surfaces with data points excluded are: “View smooth 3D graph for moderating effect 

(standardized scales)” and “View smooth 3D graph for moderating effect (unstandardized 

scales)”. The options to view surfaces with data points included are: “View smooth 3D graph 

for moderating effect with data points (standardized scales)”, and “View smooth 3D graph 

for moderating effect with data points (unstandardized scales)”. 

    In addition to 3D graphs, this software also provides various 2-dimensional (2D) graphs 

of moderating relationships. The 2D graphs shown for moderating relationships refer to low 

and high values of the moderating variable, and display the relationships of the variables 

connected through the moderated direct links in those ranges (Kock, 2016d).  
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H.10.2.2. Graphs in 2D for moderating effects 

    The “View moderating relationship in one focused graph” options allow users to view 2D 

moderating effect graphs that focus on the best-fitting lines or curves for high and low values of 

the moderating variable, and that exclude data points to provide the effect of zooming in on the 

area comprising the best-fitting lines or curves. The options available are: “View focused graph 

with low-high values of moderating variable (standardized scales)”, and “View focused 

graph with low-high values of moderating variable (unstandardized scales)”. Figure 

H.10.2.2 illustrates the former option, with standardized scales. 
 

Figure H.10.2.2. Focused 2D graph showing lines for low-high values of moderating variable 

 

 
 

    Users can set “fractional splits” for 2D moderating effects graphs, through the “Split” menu 

option. The default is 0.5, which splits the sample right in the middle when drawing the lines for 

the effects and the “low” and “high” values of the moderating variable. For instance, if you set 

the fractional split to 0.1, the software splits the sample in 10% (of the sample) to the left and 

90% to the right, respectively for the “low” and “high” values of the moderating variable. This 

new and powerful fractional split feature enables users to significantly expand their options for 

illustrating moderating effects in 2D graphs. 

    In most software tools that perform moderating effects analyses, typically the split is set at 0.5 

(i.e., in the middle), with no way to modify it. The problem with this is that a split of 0.5 may 

yield a graph that gives the impression that there is no actual moderating effect, even when the 

corresponding coefficient is strong and statistically significant. In cases like this, changing the 

split to 0.1 or 0.9 may yield graphs that clearly show the nature of the moderation. Users also 

have the option of creating multiple graphs with different splits, and include all of the graphs in 

research reports to illustrate a moderating effect in a more “dynamic” way. This is better aligned 

with the notion of moderation, where the path coefficient for a direct link changes for different 
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values of the moderating variable. For example, users may create three graphs with splits 0.1, 

0.5, and 0.9; and use all three graphs to illustrate a moderating effect in a research report. 

    Through the “Settings” menu option the user can also set the following 2D moderating 

effect graph options: the graph title, the labels associated with high and low values of the 

moderating variable, and the location of the legend box containing these labels. These 

options allow users to create more informative 2D moderating relationship graphs. For example, 

instead of “Low Exp” and “High Exp”, more informative labels such as “Novices” and 

“Veterans” could be used. Setting the location of the legend box (e.g., from “East” to 

“Northwest”) allows users to move the legend box from more to less crowded areas of the graph, 

giving the graph a more balanced and “cleaner” appearance. 

    The “View moderating relationship in one graph with data points” options allow users to 

view 2D moderating effect graphs with the best-fitting lines or curves for high and low values of 

the moderating variable, and the data points used to produce the best-fitting lines or curves. 

These options show all the data points, and thus do not provide the effect of zooming in on the 

area comprising the best-fitting lines or curves. The options available are: “View graph with 

low-high values of moderating variable and data points (standardized scales)”, and “View 

graph with low-high values of moderating variable and data points (unstandardized 

scales)”. 

    The “View moderating relationship in two graphs with data points” options allow users to 

view 2D moderating effect graphs with the best-fitting lines or curves for high and low values of 

the moderating variable, and the data points used to produce the best-fitting lines or curves, in 

two graphs shown side-by-side. These options show all the data points, and thus do not provide 

the effect of zooming in on the areas comprising the best-fitting lines or curves. The options 

available are: “View two graphs with low-high values of moderating variable and data 

points (standardized scales)”, and “View two graphs with low-high values of moderating 

variable and data points (unstandardized scales)”. 

    The graphs of relationships between pairs of latent variables, and between latent variables and 

links (moderating relationships), provide a much more nuanced view of how latent variables are 

related than most of the graphs available through other publicly available multivariate statistics 

data analysis tools. These latter graphs tend to restrict themselves to linear relationship 

depictions. However, caution must be taken in the interpretation of these graphs, especially 

when the distribution of data points is very uneven. 

    An extreme example would be a warped graph in which all of the data points would be 

concentrated on the right part of the graph, with only one data point on the far left part of the 

graph. That single data point, called an outlier, could strongly influence the shape of the 

nonlinear relationship. In cases such as this, the researcher must decide whether the outlier is 

“good” data that should be allowed to shape the relationship, or is simply “bad” data resulting 

from a data collection error. 

    If the outlier is found to be “bad” data, it can be removed from the analysis, even as it remains 

in the dataset, by a simple procedure. The user should first add the latent variable score to the set 

of standardized indicators used in a SEM analysis, using the appropriate menu option under the 

option “Modify”, from the main software window, after Step 5 is completed. The user can then 

remove the outlier by restricting the values assumed by the latent variable, using the appropriate 

selections under the “Settings” options, to a range that excludes the outlier. This allows for the 

exclusion of the outlier without the user having to modify and re-read a dataset. This procedure 
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may lead to a visible change in the shape of the nonlinear relationship, and significantly affect 

the results. 

    An outlier that is found to be “bad” data can also be removed from the dataset, and thus from 

the analysis, by a more time-consuming procedure. The user should first save the latent variable 

scores into a file, using the appropriate Save” menu option in the results window, after Step 5 is 

completed. Then the user should add those scores to the original dataset; the rows will be in the 

same order. Next the user should open the modified dataset with a spreadsheet software tool 

(e.g., Excel). The outlier should be easy to identify on the dataset (e.g., a value greater than 4), 

and should be eliminated. Then the user should re-read this modified file as if it was the original 

data file, and run all of the SEM analysis steps again.  
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H.11. View indirect and total effects 

    Through the “View indirect and total effects” options the software allows users to view 

outputs for indirect and total effects (Bollen, 1987; Kock & Gaskins, 2014) associated with all 

latent variables that are linked via one or more paths with more than one segment. These can be 

used in mediation tests of various levels of complexity (Hubona & Belkhamza, 2021; Moqbel et 

al., 2020). The options available are “View indirect and total effects (table view)” and “View 

indirect and total effects (classic view)”. The difference between these two options is that the 

former shows indirect and total effects outputs in extendable table format, and the latter in 

wrapped text format. The former option, corresponding to the table view, is recommended in 

complex models with many links among latent variables. Figure H.11 illustrates the latter option, 

the classic view, which is so named because it was the option used in previous versions of the 

software. 
 

Figure H.11. Indirect and total effects window 

 

 
 

    For each set of indirect and total effects, the following values are provided: the path 

coefficients associated with the effects, the number of paths that make up the effects, the P 

values associated with effects (calculated via resampling, using the selected resampling method), 

the standard errors associated with the effects, and effect sizes associated with the effects. 

    Indirect effects are aggregated for paths with a certain number of segments. As such, the 

software provides separate reports, within the same output window, for paths with 2, 3 etc. 

segments (Kock, 2014a; Kock & Gaskins, 2014; Moqbel et al., 2020). The software also 

provides a separate report for sums of indirect effects, as well as for total effects. All of these 

reports include P values, standard errors, and effect sizes. 
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    Having access to indirect and total effects can be critical in the evaluation of downstream 

effects of latent variables that are mediated by other latent variables, especially in complex 

models with multiple mediating effects along concurrent paths (Kock, 2014a; Kock & Gaskins, 

2014; Moqbel et al., 2020). Indirect effects also allow for direct estimations, via resampling, of 

the P values associated with mediating effects that have traditionally relied on non-automated 

and thus time-consuming calculations (Kock, 2014a; Kock & Gaskins, 2014; Moqbel et al., 

2020) based on linear (Preacher & Hayes, 2004) and nonlinear (Hayes & Preacher, 2010) 

assumptions.  
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H.12. View causality assessment coefficients 

    The “View causality assessment coefficients” options allow users to view a number of 

coefficients associated with individual paths that can be used in causality assessment (Kock, 

2022b). The options available are: “View path-correlation signs”, “View R-squared 

contributions”, “View path-correlation ratios”, “View path-correlation differences”, “View 

Warp2 bivariate causal direction ratios”, “View Warp2 bivariate causal direction 

differences”, “View Warp3 bivariate causal direction ratios”, and “View Warp3 bivariate 

causal direction differences”. Figure H.12 illustrates these options. The topic of causality 

assessment in the context of SEM is controversial (Kock & Gaskins, 2016; Pearl, 2009). 

Therefore, these causality assessment coefficients should be treated as experimental by users of 

this software, and any conclusions derived from them should be treated with caution. 
 

Figure H.12: Causality assessment coefficients options 

 

 
 

    The “View path-correlation signs” option allows users to identify path-specific Simpson’s 

paradox instances (Kock, 2015e; Kock & Gaskins, 2016; Pearl, 2009; Wagner, 1982), by 

inspecting a table with the path-correlation signs (shown in the table as the values 1 and -1). A 

negative path-correlation sign, or the value -1, is indicative of a Simpson’s paradox instance 

(Kock, 2015e; Kock & Gaskins, 2016). A Simpson’s paradox instance is a possible indication of 

a causality problem, suggesting that a hypothesized path is either implausible or reversed (Kock 

& Gaskins, 2016). 

    The interpretation of individual Simpson’s paradox instances can be difficult. This may 

be especially the case with demographic variables when these are included in the model as 

control variables, suggesting what may appear to be unlikely or impossible reverse directions of 

causality. For example, let us say that a negative path-correlation sign occurs when we include 

the control variable “Age” (time from birth, measured in years) into a model pointing at the 

variable “Job performance” (self-assessed, measured through multiple indicators on Likert-type 

scales). This may be interpreted as suggesting that “Job performance” causes “Age” in the sense 

that increased job performance causes someone to age, or causes time to pass faster. 

    Alternative explanations frequently exist for Simpson’s paradox instances, as well as for 

other “red flags” suggested by causality assessment coefficients. Taking the example above, 

one possible alternative explanation is that increased job performance causes employment to be 

maintained at more advanced ages, supporting the direction of causality from “Job performance” 

to “Age” instead of the reverse path. It can also mean that, because of sampling problems, those 

with greater job performance included in the sample tended to be older. Yet another alternative 

explanation is that there is no link between “Job performance” and “Age”, and that the inclusion 

of another control variable artificially induces that link; which tends to happen when path 
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coefficients are associated with negligible R-squared contributions (i.e., lower than 0.02). 

Whatever the case may be, ideally models should be free from Simpson’s paradox instances, 

because, as noted below, these instances generally detract from the explanatory power of the 

model. 

    Because an instance of Simpson’s paradox occurs when a path coefficient and a correlation 

associated with a pair of linked variables have different signs, the corresponding contribution to 

the R-squared of the criterion variable in the latent variable block where it occurs is negative (see 

Kock & Gaskins, 2016; Mueller, 1996). For a discussion of this effect in the context of 

evolutionary biology, see: Kock (2011a). The “View R-squared contributions” option allows 

users to view the values of the individual contributions to the R-squared of the criterion variable 

in each latent variable block by each of the predictor latent variables in the block. 

    The “View path-correlation ratios” option allows users to identify statistical suppression 

instances (Kock & Gaskins, 2016; MacKinnon et al., 2000), by inspecting a table with the 

absolute path-correlation ratios. These ratios are calculated by dividing path coefficients by their 

respective correlation coefficients and taking the absolute values of those divisions. An instance 

of statistical suppression occurs when a path coefficient is greater, in absolute terms, than the 

corresponding correlation associated with a pair of linked variables. This leads to a path-

correlation ratio that is greater than 1. Like a Simpson’s paradox instance, a statistical 

suppression instance is a possible indication of a causality problem (Kock, 2015e; Kock & 

Gaskins, 2016; Spirtes et al., 1993), suggesting that a hypothesized path is either implausible or 

reversed. The following interpretations are suggested for absolute path-correlation ratios: ratio > 

1 indicates statistical suppression; 1 < ratio <= 1.3: weak suppression; 1.3 < ratio <= 1.7: 

medium; 1.7 < ratio: strong. 

    In the same way that one can distinguish between a statistically significant and non-significant 

direct association, one can also distinguish between statistically significant and non-significant 

suppression instances. The “View path-correlation differences” option allows users to do just 

that, by inspecting a table with the absolute path-correlation differences and their respective P 

values. The absolute path-correlation differences can be used together with the absolute path-

correlation ratios to identify paths that need special attention, because path-correlation ratios 

alone can sometimes provide an inflated perception of problems, especially when paths and 

correlations are both very small. Generally speaking, a path that meets the following criteria 

should be seen as referring to a link that needs special attention in terms of possible elimination 

or careful interpretation: absolute path-correlation ratio greater than 1.3, and P value for 

absolute path-correlation difference equal to a lower than 0.05. However, a path that meets 

these criteria will not necessarily be associated with causality problems; it may in fact suggest a 

particularly interesting and unique finding (see, e.g., Kock & Gaskins, 2016; MacKinnon et al., 

2000). 

    One useful and interesting property of nonlinear algorithms, such as the Warp2 and Warp3 

algorithms, is that often bivariate nonlinear coefficients of association calculated using those 

algorithms vary depending on the hypothesized direction of causality. That is, they tend to be 

stronger in one direction than the other, which means that the residual (or error) is greater when 

the hypothesized direction of causality is in one way or the other. As such, they can be used, 

together with other coefficients, as partial evidence in support or against hypothesized causal 

links. 

    The “View Warp2 bivariate causal direction ratios” option allows users to identify 

instances in which the Warp2 algorithm suggests that causality may be reversed, by inspecting a 
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table with the Warp2 bivariate causal direction ratios. These ratios are calculated by dividing the 

path coefficient obtained for the reversed link by the path coefficient obtained for the link with 

the hypothesized direction. The following interpretations are suggested for Warp2 bivariate 

causal direction ratios: ratio > 1 supports reversed link; 1 < ratio <= 1.3: weak support; 1.3 < 

ratio <= 1.7: medium; 1.7 < ratio: strong. 

    In the same way that one can distinguish between a statistically significant and non-significant 

direct association, one can also distinguish between a statistically significant and non-significant 

Warp2 bivariate causal direction reversal instance. The “View Warp2 bivariate causal 

direction differences” option allows users to do just that, by inspecting a table with the absolute 

Warp2 bivariate causal direction differences and their respective P values. The absolute Warp2 

bivariate causal direction differences can be used together with the Warp2 bivariate causal 

direction ratios to identify paths that need special attention, because Warp2 bivariate causal 

direction ratios alone can sometimes provide an inflated perception of problems, especially when 

paths in one direction and the other are both very small. Generally speaking, a path that meets 

the following criteria should be seen as referring to a link that needs special attention in terms of 

possible direction reversal: Warp2 bivariate causal direction ratio greater than 1.3, and P 

value for absolute Warp2 bivariate causal direction difference equal to a lower than 0.05.  

    Since the Warp3 and Warp2 algorithms are different, a similar set of outputs exists in 

connection with Warp3 bivariate causal direction inferences to those available for Warp2. Often 

these different sets outputs will be fairly consistent, but sometimes they will not. 

    The “View Warp3 bivariate causal direction ratios” option allows users to identify 

instances in which the Warp3 algorithm suggests that causality may be reversed, by inspecting a 

table with the Warp3 bivariate causal direction ratios. These ratios are calculated by dividing the 

path coefficient obtained for the reversed link by the path coefficient obtained for the link with 

the hypothesized direction. The following interpretations are suggested for Warp3 bivariate 

causal direction ratios: ratio > 1 supports reversed link; 1 < ratio <= 1.3: weak support; 1.3 < 

ratio <= 1.7: medium; 1.7 < ratio: strong. 

    The “View Warp3 bivariate causal direction differences” option allows users to distinguish 

between a statistically significant and non-significant Warp3 bivariate causal direction reversal 

instance. Users can do that by inspecting a table with the absolute Warp3 bivariate causal 

direction differences and their respective P values. The absolute Warp3 bivariate causal direction 

differences can be used together with the Warp3 bivariate causal direction ratios to identify paths 

that need special attention, because Warp3 bivariate causal direction ratios alone can sometimes 

provide an inflated perception of problems, especially when paths in one direction and the other 

are both very small. Generally speaking, a path that meets the following criteria should be seen 

as referring to a link that needs special attention in terms of possible direction reversal: Warp3 

bivariate causal direction ratio greater than 1.3, and P value for absolute Warp3 bivariate 

causal direction difference equal to a lower than 0.05.  

    Since ratios and P values are generated for the Warp2 and Warp3 algorithms, a more relaxed 

approach would be to consider for special attention in terms of possible direction reversal only 

links that meet both the criteria for Warp2 and Warp3 above. Another approach, also somewhat 

relaxed, would be to consider for special attention only links that meet the criteria that refer to 

the nonlinear algorithm used for the calculation of the path coefficient associated with the link, 

either Warp2 or Warp3 (this includes the “basic” options). Having said that, the above criteria 

arguably apply to paths calculated using the Linear algorithm. 
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    The extent to which using more or less relaxed approaches would lead to “false positives” and 

“false negatives” in terms of support and lack of support for hypothesized directions of causality 

is an issue that will require future research, particularly research employing Monte Carlo 

simulations (Kock, 2016a; Robert & Casella, 2010) where the true directions of causality are 

known. 

    A path meeting the above criteria for both Warp2 and Warp3 algorithms, in terms of 

support for causal direction reversal, may in some cases appear to lead to an absurd 

conclusion. Upon further consideration, however, reversing the path may not sound as absurd. 

For example, let us say that a path from the variable “Age” (time from birth, measured in years) 

pointing at the variable “Job performance” (self-assessed, measured through multiple indicators 

on Likert-type scales) meets the above criteria, suggesting that it should be reversed. This may 

be interpreted as suggesting that “Job performance” causes “Age” in the sense that increased job 

performance causes someone to age, or causes time to pass faster. These could be seen as absurd 

conclusions, even if we consider work as a possible cause of oxidative stress, and thus 

accelerated decrepitude (note that “Age” is defined as time from birth, measured in years). 

However, a different interpretation is that increased job performance causes employment to be 

maintained at more advanced ages, supporting the direction of causality from “Job performance” 

to “Age” in a more reasonable and intuitively appealing way.   
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I. Concluding remarks and additional issues 

    This software provides users with a wide range of features, including experimental features 

and also other features that are not available from competing SEM software. For example, this 

software is the first and only (at the time of this writing) to explicitly identify nonlinear functions 

connecting pairs of latent variables in SEM models and calculate coefficients of association 

accordingly. 

    A wide range of features means that there are many coefficients, graphs and other elements 

that users can choose to include in research reports, and many possible interpretations of those 

elements. This user manual does not cover all possible interpretations. Users are strongly advised 

to keep abreast of the latest developments on methodological issues employing this software, 

particularly those from research published in academic outlets (e.g., academic journals). 

    Multivariate statistical analysis software systems, like this software, are inherently complex; 

sometimes yielding results that are biased and disconnected with the reality of the phenomena 

being modeled. Users are strongly cautioned against accepting the results provided by this 

software as a completely unbiased representation of the underlying reality that the software 

attempts to unveil. 

    No multivariate statistical analysis software yields completely unbiased results. If one such 

“perfect” software tool existed, the percentages of false positives and false negatives based on a 

number of trials with the software using simulated data would all be zero. That is, no false 

positives or false negatives of any kind (e.g., association strength, direction of causality) would 

occur. 

    Achieving this level of perfection is the driving force behind the development of this software, 

even though this level of perfection will never be achieved – simply because it is not achievable. 

Some additional issues regarding this quest for perfection are discussed in the following 

subsections.   
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I.1. Warping from a conceptual perspective 

    What this software does when it “warps” relationships is relatively simple at a conceptual 

level. It identifies a set of functions F1(LVp1), F2(LVp2) … that relate blocks of latent variable 

predictors (LVp1, LVp2 ...) to a criterion latent variable (LVc) in this way (Kock, 2010; 2011b; 

2016c): 

 

        LVc = p1*F1(LVp1) + p2*F2(LVp2) + … + E 

 

    In the equation above, p1, p2 ... are path coefficients, and E is the error term of the equation. 

All variables are standardized. Any model can be decomposed into a set of blocks relating latent 

variable predictors and criteria in this way. 

    Typically, the more the functions F1(LVp1), F2(LVp2) ... look like curves, and unlike lines, 

the greater is the difference between the path coefficients p1, p2 ... and those that would have 

been obtained through a strictly linear analysis. 

    What this software does is not unlike what a researcher would do if he or she modified 

predictor latent variable scores prior to the calculation of path coefficients using a function like 

the logarithmic function. An example is provided in the equation below, where a logarithmic 

transformation is applied to LVp1. 

 

        LVc = p1*log(LVp1) + p2*LVp2 + … + E 

 

    This software, however, does that automatically and for a much wider range of functions, with 

modification constants included. For example, in the term A*log(B*LVp1) the constants A and 

B are modification constants; using simply log(LVp1) as a modifier function in an equation like 

the one above assumes that A=1 and B=1, which may be incorrect assumptions that will lead to 

distorted results and mistaken conclusions.  

    As mentioned above, often the path coefficients p1, p2 ... will go up in value due to warped 

analysis, but that may not always be the case. Given the nature of multivariate analysis, an 

increase in a path coefficient may lead to a decrease in a different path coefficient, for predictor 

latent variables associated with the same criterion latent variable, because each path coefficient 

in a block is calculated in a way that controls for the effects of the other predictor latent 

variables. That is, in any given block of latent variables, the predictor latent variables “compete” 

for the explained variance in the criterion latent variable. 

    There is no guarantee that the functions F1(LVp1), F2(LVp2) ... discovered by this software 

will match perfectly that “true” underlying functions. As mentioned earlier, this level of 

perfection is one that should be strived for, but that is essentially impossible to achieve due to 

one key factor – measurement error. 

    The more measurement error exists (i.e., the greater is its magnitude), the more likely it is that 

the functions F1(LVp1), F2(LVp2) ... discovered by this software will be distorted by error. In 

fact, the existence of significant measurement error may lead this software to model relationships 

that are actually linear as nonlinear. 

    With the above caveats in mind, users can check, through simple visual inspection tests, 

whether the functions discovered by this software are at least good approximations of the true 

underlying functions. 
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    To do so, users can divide the dataset into a number of quantiles (e.g., 3), and then build 

graphs containing the mean values of each criteria latent variable for each of the quantiles. These 

graphs can be simple bar charts or scatter plots. 

    This allows users to check whether the shapes of the plots are similar to the shapes of the best-

fitting curves generated by this software. The best-fitting curves are representations of the 

functions F1(LVp1), F2(LVp2) ... discovered by this software.  
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I.2. Interpreting warped relationships 

    Linear relationships between pairs of latent variables, that is, those relationships best described 

by a line, are relatively easy to interpret. They suggest that an increase in one variable either 

leads to an increase (if the slope of the line is positive) or decrease (if the slope is negative) in the 

other variable. 

    Nonlinear relationships provide a much more nuanced view of the data, but at the same time 

are much more difficult to interpret (Kock, 2010; 2011b; 2016c; Kock et al., 2017). Figure I.2 

shows what could be seen as a distorted S curve that is fitted to the data points. The latent 

variables are “Proc”, the extent to which various teams charged with developing new products 

kept track of their work and costs (i.e., engaged in procedural structuring); and “Effe”, the 

effectiveness of the teams, measured as the market success in terms of sales and profits of the 

new products that the teams developed. 
 

Figure I.2. Example of warped relationship 

 

 
 

    The distorted S can in turn be seen as a combination of two distorted U curves (or J curves), 

one straight and the other inverted, connected at an inflection point. The inflection point is the 

point at the curve where the curvature changes direction; i.e., the second derivative of the S 

curve changes sign. The inflection point is located at around minus 1 standard deviations from 

the “Proc” mean. That mean is at the zero mark on the horizontal axis, since the data shown is 

standardized. 

    Because an S curve is a combination of two distorted U curves, we can interpret each U curve 

section separately. A straight U curve, like the one shown on the left side of the graph, before the 

inflection point, can be interpreted as follows. 

    The first half of the U curve goes from approximately minus 3.4 to minus 2.5 standard 

deviations from the mean, at which point the lowest team effectiveness value is reached for the U 

curve. In that first half of the U curve, an increase in team procedural structuring leads to a 

decrease in team effectiveness. After that first half, an increase in team procedural structuring 

leads to an increase in team effectiveness. 
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    One interpretation is that the first half of the U curve refers to novice users of procedural 

structuring techniques. That is, the process of novice users struggling to use procedural 

structuring techniques more and more intensely, which they may not be familiar with, ends up 

leading to effectiveness losses for their teams. At a certain point, around minus 2.5 standard 

deviations, that situation changes, and the teams start to really benefit from procedural 

structuring, possibly because the second half of the U curve refers to users with more experience 

using procedural structuring techniques. 

    The interpretation of the second U curve on the right, this one an inverted U curve, should be 

done in a similar fashion. Usually there are multiple interpretations that can be plausible 

depending on context and other data. Other data may include qualitative data, which can be very 

useful when combined with quantitative data. 

    As can be inferred from this example, it is not easy to interpret nonlinear relationships. But the 

apparent simplicity of strictly linear modeling, or linear estimations of possibly nonlinear 

relationships, is nothing but a mirage.  
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I.3. Correlation versus collinearity 

    Let us consider a theoretical case in which two predictor variables point at a criterion variable, 

and the predictor variables are uncorrelated. In this case, the value of the R for the criterion 

variable (the positive square root of the R-squared) will be a function of two other correlation 

values, R1 and R2, which are the correlations between each of the predictor variables and the 

criterion. The value of the VIF, which is itself a function of R, will consequently be a function of 

R1 and R2. 

    The values of the VIF for the scenario above are plotted in Figure I.3, generated based on a 

simulation with MATLAB. Three dimensions are needed because three variables are involved. 

As it can be seen, the variable VIF can reach unacceptably high values, clearly suggestive of 

collinearity, and for much lower values of R1 and R2 than in the case when only two variables are 

present. Let us assume that we were to set the threshold of VIF for collinearity at 3.3. In this 

case, a correlation of 0.835 or higher would suggest collinearity in a situation involving only two 

variables (Kock & Lynn, 2012). 
 

Figure I.3. The relationship between the VIF and the Rs for three variables 

 

 
 

    The points at which the VIF values increase steeply are indicated as peaks (including small 

peaks) on the three-dimensional plot. Here a combination of values of R1 and R2 in the range of 

0.6 to 0.8 lead to VIF values that are suggestive of collinearity for a threshold level of 3.3. For 

example, if R1 and R2 are both equal to 0.625, the corresponding VIF will be 4.57. 

    As models become more complex from a structural perspective, with more variables in them, 

the absolute values of the correlations that can lead to significant multicollinearity goes 

progressively down. Even if not in the same block, latent variables may still be redundant and 

cause interpretation problems when correlations are relatively low. This is why it is important 

that users of this software take the various VIFs that are reported into consideration when 

assessing their models. 
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    The example above also illustrates the fact that the concepts of collinearity and correlation are 

distinct concepts, even though they are often confused. Collinearity is a multivariate notion, 

whereas correlation refers to a pair of variables (Kock & Lynn, 2012). Two or more variables are 

said to be collinear when they measure the same attribute of an object; the latter is also called a 

construct. In this sense, the variables “satisfaction with a technology” and “excitement about the 

technology” may be collinear, if the question-statements related to these two variables are seen 

as referring to the same object attribute “affective response to the technology” by the respondents 

of a questionnaire. Two variables are said to be correlated if they vary in concert with each other, 

even though the variables may measure totally different object attributes; e.g., a person’s weight 

from 1 to 20 years of age, and the price of gasoline during those years.  



WarpPLS User Manual: Version 8.0 

 128 

I.4. Stable P value calculation methods 

    A Monte Carlo simulation was conducted to assess the performance of three P value 

calculation methods implemented through this software: Bootstrapping, Stable2, and Stable3. 

Performance was assessed in terms of statistical power and closeness to the actual standard errors 

obtained through the analyses of simulated samples. Standard errors are used, together with path 

coefficients, to obtain P values. Table I.4, adapted from Kock (2014b) and Kock (2018b), 

summarizes the results of this simulation. 
 

Table I.4. Summarized Monte Carlo experiment results for P value calculation methods 

 

Method BOOT STBL2 STBL3 BOOT STBL2 STBL3 

Sample size 50 50 50 300 300 300 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.383 0.383 0.383 0.388 0.388 0.388 

CO>GT(Power) 0.905 0.954 0.946 1 1 1 

CO>GT(SEPath) 0.125 0.125 0.125 0.076 0.076 0.076 

CO>GT(EstSEPath) 0.120 0.115 0.122 0.047 0.053 0.054 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.347 0.347 0.347 0.347 0.347 0.347 

CO>EU(Power) 0.781 0.900 0.867 1 1 1 

CO>EU(SEPath) 0.131 0.131 0.131 0.072 0.072 0.072 

CO>EU(EstSEPath) 0.133 0.116 0.124 0.049 0.053 0.055 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.224 0.224 0.224 0.218 0.218 0.218 

CO>AC(Power) 0.419 0.611 0.559 0.985 0.995 0.994 

CO>AC(SEPath) 0.141 0.141 0.141 0.061 0.061 0.061 

CO>AC(EstSEPath) 0.166 0.118 0.129 0.054 0.054 0.056 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.333 0.333 0.333 0.347 0.347 0.347 

GT>SU(Power) 0.711 0.863 0.823 1 1 1 

GT>SU(SEPath) 0.206 0.206 0.206 0.160 0.160 0.160 

GT>SU(EstSEPath) 0.146 0.116 0.125 0.052 0.053 0.055 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.175 0.175 0.175 0.163 0.163 0.163 

EU>SU(Power) 0.254 0.410 0.356 0.917 0.921 0.906 

EU>SU(SEPath) 0.131 0.131 0.131 0.085 0.085 0.085 

EU>SU(EstSEPath) 0.157 0.119 0.132 0.054 0.054 0.056 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.159 0.159 0.159 0.147 0.147 0.147 

AC>SU(Power) 0.240 0.405 0.335 0.866 0.868 0.849 

AC>SU(SEPath) 0.137 0.137 0.137 0.073 0.073 0.073 

AC>SU(EstSEPath) 0.165 0.119 0.132 0.053 0.054 0.056 

 

    The column labels BOOT, STBL2 and STBL3 respectively refer to the Bootstrapping, 

Stable2, and Stable3 methods. The latent variables in the model used as a basis for the simulation 

are: CO = communication flow orientation; GT = usefulness in the development of IT solutions; 

EU = ease of understanding; AC = accuracy; and SU = impact on redesign success (for more 

details, see: Kock, 2014b and Kock, 2018b). The meanings of the acronyms within parentheses 

are the following: TruePath = true path coefficient; AvgPath = mean path coefficient estimate; 

Power = statistical power; SEPath = standard error of path coefficient estimate; and EstSEPath = 

method-specific standard error of path coefficient estimate. 
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    To conduct the simulation, we created an analyzed 1,000 samples for each of the following 

sample sizes: 50, 100, 200, 300, and 500. The PLS Mode A algorithm was used in the analyses. 

In this summarized set of results, we restrict ourselves to sample sizes 50 and 300. Full results, 

for all sample sizes included in the simulation, are available from Kock (2014b) and Kock 

(2018b). 

    As we can see, the mean path coefficient estimates differ from the true path coefficients across 

different sample sizes, and generally underestimate the true path coefficients. This 

underestimation stems from the use of composites in PLS Mode A, which in turn leads to the 

known composite correlation attenuation (Kock, 2015b; Nunnally & Bernstein, 1994). This 

attenuation “propagates” to the path coefficients (Kock, 2015b; 2016a). This problem is 

addressed in this software through the availability of factor-based PLS algorithms (Kock, 2017; 

2019a; 2019b; 2019c; 2023c). 

    Generally, the method-specific standard errors of path coefficient estimates obtained via 

Stable3 were the closest to the actual (or true) standard errors of path coefficient estimates. This 

suggests that standard errors estimated via Stable3 are not only stable when compared with those 

estimated via Bootstrapping, but also more accurate. Moreover, both Stable2 and Stable3 led to 

greater statistical power than Bootstrapping at small sample sizes. This is noteworthy, because 

power tends to be compromised the most with small sample sizes, and to invariably increase as 

sample sizes go up regardless of the standard error and P value calculation method used.  
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I.5. Missing data imputation methods 

    A Monte Carlo simulation was conducted to assess the performance of five missing data 

imputation methods implemented through this software: Arithmetic Mean Imputation, Multiple 

Regression Imputation, Hierarchical Regression Imputation, Stochastic Multiple Regression 

Imputation, and Stochastic Hierarchical Regression Imputation. Table I.5, adapted from Kock 

(2014c) and Kock (2018a), summarizes the results of this simulation. 
 

Table I.5. Summarized Monte Carlo experiment results for missing data imputation methods 

 

Missing data imputation 

scheme 

NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.390 0.348 0.367 0.354 0.333 0.300 

CO>GT(SEPath) 0.075 0.113 0.110 0.113 0.138 0.162 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.349 0.312 0.321 0.313 0.289 0.262 

CO>EU(SEPath) 0.069 0.101 0.108 0.106 0.133 0.151 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.219 0.198 0.206 0.195 0.188 0.161 

CO>AC(SEPath) 0.062 0.078 0.090 0.083 0.100 0.108 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.381 0.357 0.359 0.352 0.334 0.312 

GT>SU(SEPath) 0.127 0.152 0.156 0.158 0.179 0.195 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.192 0.183 0.199 0.178 0.188 0.163 

EU>SU(SEPath) 0.062 0.072 0.077 0.078 0.082 0.089 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.165 0.157 0.176 0.154 0.166 0.141 

AC>SU(SEPath) 0.058 0.067 0.073 0.072 0.077 0.081 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.811 0.691 0.606 0.649 0.623 0.652 

GT3<GT(SELoad) 0.113 0.042 0.120 0.076 0.115 0.090 

 

    The column labels NMD, MEAN, MREGR, HREGR, MSREG and HSREG respectively refer 

to no missing data, Arithmetic Mean Imputation, Multiple Regression Imputation, Hierarchical 

Regression Imputation, Stochastic Multiple Regression Imputation, and Stochastic Hierarchical 

Regression Imputation. The latent variables in the model used as a basis for the simulation are: 

CO = communication flow orientation; GT = usefulness in the development of IT solutions; EU 

= ease of understanding; AC = accuracy; and SU = impact on redesign success (for more details, 

see: Kock, 2014c; 2018a). The meanings of the acronyms within parentheses are the following: 

TruePath = true path coefficient; AvgPath = mean path coefficient estimate; SEPath = standard 

error of path coefficient estimate; TrueLoad = true loading; AvgLoad = mean loading estimate; 

and SELoad = standard error of loading estimate. 

    When creating data for our Monte Carlo simulation we varied the following conditions: 

percentage of missing data (0%, 30%, 40%, and 50%), and sample size (100, 300, and 500). This 

led to a 4 x 3 factorial design, with 12 conditions. We created an analyzed 1,000 samples for 

each of these 12 conditions; a total of 12,000 samples. In this summarized set of results we 

restrict ourselves to 30% missing data and the sample size of 300. Full results, for all percentages 

of missing data and sample sizes included in the simulation, are available from Kock (2014c) and 

Kock (2018a). Since all loadings are the same in the true population model, loading-related 
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estimates for only one indicator of the composites are shown. This avoids crowding and 

repetition, as the same pattern of results repeats itself in connection with all loadings. 

    The mean path coefficient estimates that are shown underlined were obtained through the 

application of the PLS Mode A algorithm to datasets where no data was missing (NMD). Note 

that they generally underestimate the true path coefficients. This underestimation stems from the 

use of composites, discussed earlier, which leads to an attenuation of composite correlations 

(Nunnally & Bernstein, 1994). This correlation attenuation extends to the path coefficients 

(Kock, 2015a; 2015b), leading to the observed underestimation. The opposite effect is observed 

in connection with loadings, which tend to be overestimated in PLS-based SEM analyses 

employing PLS Mode A. As noted earlier, these problems are addressed in this software through 

the availability of factor-based PLS algorithms (Kock, 2017; 2019a; 2019b; 2019c; 2023c). 

    Multiple Regression Imputation (MREGR) yielded the least biased mean path coefficient 

estimates, followed by Arithmetic Mean Imputation (MEAN). When we look at mean loading 

estimates, Arithmetic Mean Imputation (MEAN) yielded the least biased results, followed by 

Stochastic Hierarchical Regression Imputation (HSREG) and Hierarchical Regression 

Imputation (HREGR. 

    Compared with the no missing data condition (NMD), none of the methods induced a 

reduction in standard errors for path coefficients. This is noteworthy since prior results outside 

the context of PLS-based SEM have tended to show a significant downward bias in standard 

errors, particularly for non-stochastic missing data imputation varieties. Such downward bias in 

standard errors has led to concerns regarding an inflation in type I errors, and warnings against 

the use of single missing data imputation methods in general (Enders, 2010; Kock, 2014c; 2018a; 

Newman, 2014). Our results suggest that such concerns may not be warranted in the context of 

PLS-based SEM.  
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I.6. Factor-based PLS algorithms 

    The factor-based PLS algorithms available in this software combine the precision of 

covariance-based SEM algorithms, under common factor model assumptions (Kock, 2015b; 

2019a; 2019b; 2019c; 2023c), with the nonparametric characteristics of classic PLS algorithms. 

Moreover, the factor-based PLS algorithms address head-on a problem that has been discussed 

since the 1920s – the factor indeterminacy problem. Classic PLS algorithms yield composites, as 

linear combinations of indicators, which can be seen as factor approximations. The factor-based 

PLS algorithms, on the other hand, provide estimates of the true factors, as linear combinations 

of indicators and measurement errors (Kock, 2017; 2019a; 2019b; 2019c; 2023c). 

    A Monte Carlo simulation was conducted to comparatively assess the performance of one of 

the factor-based PLS algorithms, namely the Factor-Based PLS Type CFM1 algorithm, against 

that of the PLS Mode A algorithm. Like covariance-based SEM algorithms, the Factor-Based 

PLS Type CFM1 algorithm is fully compatible with common factor model assumptions, 

including the assumption that all indicator errors are uncorrelated. Table I.6, adapted from Kock 

(2015b), summarizes the results of this simulation. 
 

Table I.6. Summarized Monte Carlo experiment results for composite-based and factor-based algorithms 

 

SEM method PLSA PLSF PLSA PLSF PLSA PLSF 

Sample size 50 50 100 100 300 300 

EU>TE(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

EU>TE(AvgPath) 0.339 0.380 0.309 0.385 0.303 0.394 

EU>TE(SEPath) 0.125 0.161 0.128 0.127 0.110 0.070 

EU>TP(TruePath) 0.300 0.300 0.300 0.300 0.300 0.300 

EU>TP(AvgPath) 0.260 0.301 0.248 0.294 0.234 0.297 

EU>TP(SEPath) 0.135 0.157 0.108 0.133 0.085 0.079 

TE>TP(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

TE>TP(AvgPath) 0.201 0.234 0.189 0.225 0.174 0.203 

TE>TP(SEPath) 0.144 0.163 0.098 0.132 0.061 0.079 

EU3<EU(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

EU3<EU(AvgLoad) 0.793 0.692 0.802 0.695 0.808 0.699 

EU3<EU(SELoad) 0.129 0.108 0.113 0.077 0.112 0.049 

 

    The column labels PLSA and PLSF respectively refer to the PLS Mode A and Factor-Based 

PLS Type CFM1 algorithms. The latent variables in the model used as a basis for the simulation 

are: EU = e-collaboration technology use; TE = team efficiency; and TP = team performance (for 

more details, see Kock, 2015b). The meanings of the acronyms within parentheses are the 

following: TruePath = true path coefficient; AvgPath = mean path coefficient estimate; SEPath = 

standard error of path coefficient estimate; TrueLoad = true loading; AvgLoad = mean loading 

estimate; and SELoad = standard error of loading estimate. 

    In the Monte Carlo simulation 300 samples were created for each of the following sample 

sizes: 50, 100, and 300. We show results for all of the structural paths in the model, but restrict 

ourselves to loadings for one indicator in one factor since all loadings are the same in the true 

population model used. This is also done to avoid repetition, as the same general pattern of 

results for loadings repeats itself for all indicators in all factors. 

    As we can see from the summarized results, the Factor-Based PLS Type CFM1 algorithm 

yielded virtually unbiased estimates at the sample size of 300, whereas the PLS Mode A 

algorithm yielded significantly biased estimates at that same sample size. One of the reasons for 
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these significantly biased estimates with PLS Mode A are the relatively low loadings in the true 

population model used as a basis for simulation, namely 0.7 for all indicators, which tend to be a 

challenge for algorithms based on Wold’s original PLS design (Kock, 2015a; 2015b; 2017). 

    The relatively low loadings in the true population model apparently had little effect on the 

Factor-Based PLS Type CFM1 algorithm’s asymptotic convergence to the true values of the 

model parameters, although those loadings probably slowed down that convergence somewhat as 

sample sizes increased. In other simulations we conducted with higher loadings, convergence 

was achieved at smaller sample sizes. 

    For several of the path coefficients and loadings the Factor-Based PLS Type CFM1 algorithm 

yielded lower standard errors, particularly as sample sizes increased. This is noteworthy because 

the Factor-Based PLS Type CFM1 algorithm is considerably more computationally complex 

than the PLS Mode A algorithm (Kock, 2015b), and thus could have been expected to have a 

greater “cost” in terms of standard errors. 

    Nevertheless, standard errors yielded at the sample size of 50 were generally higher for the 

Factor-Based PLS Type CFM1 algorithm. Apparently the difference was enough to have a 

negative effect on power, as the ratios of path coefficients to standard errors indicate. That is, at 

the sample size of 50 one could argue based on the results that the PLS Mode A algorithm has 

greater power than the Factor-Based PLS Type CFM1 algorithm for this particular model, 

although the ratios of path coefficients to standard errors suggest that both algorithms may 

struggle to avoid type II errors at this small sample size, particularly for the paths whose true 

coefficients were lower than 0.400 (the path with the highest strength).  
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I.7. Full latent growth graphs 

    As noted earlier in this user manual, you can view several graphs for each of the full latent 

growth coefficients (Kock, 2020a) by simply clicking on a full latent growth coefficient made 

available via the menu option “Explore full latent growth”. Each of the graphs is made up of 

several plots, which refer to changes in the coefficients selected (e.g., path coefficients) for the 

relationship between the variables shown in the X and Y axes, as the latent growth variable goes 

from low to high. The following graph menu options are available: “Full sample splits 

(megaphones)”, “Partial sub-samples splits (megaphones)”, “Full sample splits (bars)”, 

“Partial sub-samples splits (bars)”, “Full sample splits (lines)”, and “Partial sub-samples 

splits (lines)”. Each of these six graph types shows multiple plots for low and high values of the 

latent growth variable. Figure I.7.1 shows three types of plots based on full sample splits. The 

plots based on partial sub-samples splits are similar. 
 

Figure I.7.1. Full latent growth graphs 

 

 
 

    As we can see, the “Full sample splits (megaphones)” and “Partial sub-samples splits 

(megaphones)” graphs show plots with full sample and partial sub-sample splits with 

megaphone line patterns (to borrow a term from graphical analysis in finance), where best-fitting 
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lines are scaled to start at zero. The “Full sample splits (bars)” and “Partial sub-samples splits 

(bars)” graphs show plots with full sample and partial sub-sample splits with bar charts, where 

the sizes of the bars reflect the gradient of the best-fitting lines (i.e., the path coefficients). 

Finally, the “Full sample splits (lines)” and “Partial sub-samples splits (lines)” graphs show 

plots with full sample and partial sub-sample splits with best-fitting lines (not scaled to start at 

zero). Figure I.7.2 contrasts full sample versus partial sub-samples splits. 
 

Figure I.7.2. Full sample versus partial sub-samples splits 

 

 
 

    Plots employing full sample splits are similar to those provided elsewhere in this software for 

2D moderating effects graphs. For example, if a full sample split is indicated as 0.29, the number 

of data points to the left is 29 percent of the sample, and to the right it is the remaining 71 

percent of the sample. These refer to the low and high values of the full latent growth variable. 

Therefore, whenever full sample splits are employed, the entire sample is used to generate the 

corresponding plots. 

    Plots employing partial sub-samples splits segment a sub-sample around the split into low 

and high values, so they provide a more localized picture with respect to latent growth effects. 

These sub-samples are approximately of the same size, and include points around the split. For 
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example, if a split is indicated as 0.29, the corresponding plot will be based on 14 percent of the 

sample to the left of the split (where 0.14 is the first split), and 14 percent of the sample to the 

right of the split. At the top of each plot something similar to the following piece of text is 

indicated. 

        “Split(coeffs.)=0.29(-0.18,0.25)”. 

    In this example, the split is 0.29. The -0.18 and 0.25 coefficients are the gradients of the best-

fitting lines obtained for the low and high values of the full latent growth variable. Note that for 

megaphone plots the gradients are the inclinations of the lines, where the lines intersect at zero. 

The same is true for the plots with free-floating lines, but here the lines do not intersect at zero, 

and the graphs are very similar to those provided for 2D moderating effects graphs. For the plots 

with bars, the sizes of the bars (with respect to the zero baseline) reflect the gradients. 

    The low and high values of the full latent growth variable define data segments where the 

inclination of the relationship among a pair of variables X and Y presumably changes; in which 

case latent growth occurs. In the example above, the existence of latent growth is clear, because 

the inclinations go from negative (indicated by the -0.18 coefficient) to positive (indicated by the 

0.25 coefficient). If the coefficients were the same, then one could conclude that there appears to 

be no latent growth around the 0.29 split. 

    Note that in the figures above the differences among the pairs of gradients, and thus the 

magnitude of the latent growth effects, appears to decrease as we progress across different splits. 

This is an indication of the existence of second degree growth. From a moderating effect analysis 

perspective, this could be interpreted as an indication of double moderation. Many latent growth 

graphs are not as easy to interpret as the ones we have shown here. It is not uncommon to see 

gradients that appear to vary randomly as we progress across different splits, which are difficult 

to interpret. These suggest that our understanding of latent growth effects, as well as related 

moderating and nonlinear effects, has still much room to grow.  
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J. Glossary 

    Adjusted R-squared coefficient. A measure equivalent to the R-squared coefficient, with the 

key difference that it corrects for spurious increases in the R-squared coefficient due to 

predictors that add no explanatory value in each latent variable block. Like R-squared 

coefficients, adjusted R-squared coefficients can assume negative values. These are rare 

occurrences that normally suggest problems with the model in which they occur; e.g., severe 

collinearity or model misspecification. 

    Analytic composites. Analytic composites (Kock, 2021a; Kock et al., 2018) are weighted 

aggregations of indicators where the relative weights are set by the user, usually based on an 

existing theory. 

    Average variance extracted (AVE). A measure associated with a latent variable, which is 

used in the assessment of the discriminant validity of a measurement instrument. Less 

commonly, it can also be used for convergent validity assessment. 

    Composite reliability coefficient. This is a measure of reliability associated with a latent 

variable. Another name for it is Dillon–Goldstein rho coefficient. Unlike the Cronbach’s alpha 

coefficient, another measure of reliability, the compositive reliability coefficient takes indicator 

loadings into consideration in its calculation. It often is slightly higher than the Cronbach’s alpha 

coefficient. 

    Constrained latent growth. The constrained latent growth method is essentially the same 

method as that employed in a full latent growth analysis (Hubona & Belkhamza, 2021; Kock, 

2020a); with the difference that here it is constrained to a sub-sample, typically formed by two 

groups being compared. This method is normally used in multi-group analyses, whereby the 

dataset is segmented into various groups, all possible combinations of pairs of groups are 

generated, and each pair of groups is compared. 

    Construct. A conceptual entity measured through a latent variable. Sometimes it is referred to 

as “latent construct”. The terms “construct” or “latent construct” are often used interchangeably 

with the term “latent variable”. 

    Convergent validity of a measurement instrument. Convergent validity is a measure of the 

quality of a measurement instrument; the instrument itself is typically a set of question-

statements. A measurement instrument has good convergent validity if the question-statements 

(or other measures) associated with each latent variable are understood by the respondents in the 

same way as they were intended by the designers of the question-statements. 

    Cronbach’s alpha coefficient. This is a measure of reliability associated a latent variable. It 

usually increases with the number of indicators used, and is often slightly lower than the 

composite reliability coefficient, another measure of reliability. 

    Discriminant validity of a measurement instrument. Discriminant validity is a measure of 

the quality of a measurement instrument; the instrument itself is typically a set of question-

statements. A measurement instrument has good discriminant validity if the question-statements 

(or other measures) associated with each latent variable are not confused by the respondents, in 

terms of their meaning, with the question-statements associated with other latent variables. 

    Effect size. The effect size is a measure of the magnitude of an effect that is independent of 

the size of the sample analyzed. The effect sizes are calculated by this software as the absolute 

values of the individual contributions of the corresponding predictor latent variables to the R-

squared coefficients of the criterion latent variable in each latent variable block. With the effect 

sizes users can ascertain whether the effects indicated by path coefficients are small, medium, or 
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large. The values usually recommended are 0.02, 0.15, and 0.35; respectively. Values below 0.02 

suggest effects that are too weak to be considered relevant from a practical point of view, even 

when the corresponding P values are statistically significant; a situation that may occur with 

large sample sizes. 

    Endogeneity. The term “endogeneity” refers to a phenomenon that is characterized by the 

structural error term for an endogenous variable being correlated with any of the variable’s 

predictors (Kock, 2022a). For example, let us consider a simple population model with the 

following links A > B and B > C. This model may present endogeneity with respect to C, 

because variation flows from A to C via B, leading to a biased estimation of the path for the link 

B > C via ordinary least squares regression. Adding a link from A to C could be argued as 

“solving the problem”, but in fact it creates the possibility of a type I error, since the link A > C 

does not exist at the population level. A more desirable solution to this problem is to create an 

instrumental variable iC, incorporating only the variation of A that ends up in C and nothing else, 

and revise the model so that it has the following links: A > B, B > C and iC > C. The link iC > C 

can be used to test for endogeneity, via its P value and effect size (Kock, 2022a). This link (i.e., 

iC > C) can also be used to control for endogeneity, thus removing the bias when the path 

coefficient for the link B > C is estimated via ordinary least squares regression. Endogeneity may 

also arise from multilevel effects (Kock, 2020b). 

    Endogenous latent variable. This is a latent variable that is hypothesized to be affected by 

one or more other latent variables. An endogenous latent variable has one or more arrows 

pointing at it in the model graph. 

    Exogenous latent variable. This is a latent variable that does not depend on other latent 

variables, from a SEM analysis perspective. An exogenous latent variable does not have any 

arrow pointing at it in the model graph. 

    Factor score. A factor score is the same as a latent variable score; see the latter for a 

definition. 

    Formative latent variable. A formative latent variable is one in which the indicators are 

expected to measure certain attributes of the latent variable, but the indicators are not expected to 

be highly correlated with the latent variable score, because they (i.e., the indicators) are not 

expected to be correlated with one another. For example, let us assume that the latent variable 

“Satisf” (“satisfaction with a meal”) is measured using the two following question-statements: “I 

am satisfied with the main course” and “I am satisfied with the dessert”. Here, the meal 

comprises the main course, say, filet mignon; and a dessert, a fruit salad. Both main course and 

dessert make up the meal (i.e., they are part of the same meal) but their satisfaction indicators are 

not expected to be highly correlated with each other. The reason is that some people may like the 

main course very much, and not like the dessert. Conversely, other people may be vegetarians 

and hate the main course, but may like the dessert very much. 

    Full collinearity VIFs. Variance inflation factors (VIFs) are measures of the degree of 

collinearity (or multicollinearity) among variables, including both indicators and latent variables. 

With latent variables, collinearity can take two main forms: vertical and lateral collinearity 

(Kock & Lynn, 2012). Vertical, or classic, collinearity is predictor-predictor latent variable 

collinearity in individual latent variable blocks. Lateral collinearity is a term coined by Kock & 

Lynn (2012) that refers to predictor-criterion latent variable collinearity; a type of collinearity 

that can lead to particularly misleading results. Full collinearity VIFs allow for the simultaneous 

assessment of both vertical and lateral collinearity in a SEM model. They can also be used for 

common method bias and discriminant validity assessment (Kock, 2023c). 
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    Full latent growth. Sometimes the actual inclusion of moderating variables and 

corresponding links in a model leads to problems; e.g., increases in collinearity levels, and the 

emergence of instances of Simpson’s paradox (Kock, 2015e; Kock & Gaskins, 2016). By using 

the full latent growth analysis method, users can completely avoid these problems. This method 

allows one to estimate the effects of a latent variable or indicator on all of the links in a model 

(all at once), without actually including any links between the variable and other variables in the 

model (Kock, 2020a). Moreover, growth in coefficients associated with links among different 

latent variables and between a latent variable and its indicators, can be estimated; allowing for 

measurement invariance tests applied to loadings and/or weights. Finally, growth coefficients 

can be used in the assessment of moderated mediation effects (Hubona & Belkhamza, 2021; 

Kock, 2020a; 2021c). 

    Heterotrait-monotrait (HTMT) ratios. These ratios, as well as the updated HTMT2 ratios, 

have been proposed for discriminant validity assessment, particularly in the context of 

composite-based SEM via classic PLS algorithms; as opposed to factor-based SEM via modern 

algorithms that estimate factors (which have been available from this software for quite some 

time now). Discriminant validity is a measure of the quality of a measurement instrument; the 

instrument itself is typically a set of question-statements. A measurement instrument has good 

discriminant validity if the question-statements (or other measures) associated with each latent 

variable are not confused by the respondents, in terms of their meaning, with the question-

statements associated with other latent variables. 

    Indicator. The term indicator is frequently used as synonymous with that of manifest variable; 

a convention that is used here. Thus, see the latter for a definition. More technically though, 

indicators are manifest variables that are actually used in the measurement model as direct 

measures of latent variables. As such, technically speaking, there can be manifest variables that 

are not indicators, if the manifest variables in question are part of the original dataset but not 

included in the measurement model. 

    Inner model. In a structural equation modeling analysis, the inner model is the part of the 

model that describes the relationships among the latent variables that make up the model. In this 

sense, the path coefficients are inner model parameter estimates. 

    Instrumental variable. Instrumental variables are variables that selectively share variation 

with other variables, and only with those variables. Instrumental variables can be used to test and 

control for endogeneity, and also to estimate reciprocal relationships (Kock, 2023a; Morrow & 

Conger, 2021). Endogeneity may arise from multilevel effects (Kock, 2020b). 

    Latent growth. Generally speaking, latent growth refers to underlying growth in coefficients 

associated with links among different latent variables and between a latent variable and its 

indicators. This underlying growth is often reflected in significant moderating and nonlinear 

effects. 

    Latent variable. A latent variable is a variable that is measured through multiple variables 

called indicators or manifest variables. For example, “satisfaction with a meal” may be a latent 

variable measured through two manifest variables that store the answers on a 1 to 7 scale 

(1=strongly disagree; 7 strongly agree) to the following question-statements: “I am satisfied with 

this meal”, and “After this meal, I feel full”. 

    Latent variable block. A latent variable block is a group of latent variables in which one or 

more predictor latent variables point at one criterion latent variable. In a PLS-based SEM 

analysis, once latent variable scores are calculated, a series of multiple least squares regressions 

are conducted to calculate path coefficients. Each multiple least squares regression is performed 
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on a latent variable block, until all blocks are covered. The term “latent variable block” is also 

used in the PLS-based SEM literature to refer to a group of manifest variables linked to their 

assigned latent variable; i.e., a latent variable and its indicators. 

    Latent variable score. Latent variable scores are values calculated based on the indicators 

defined by the user as associated with the latent variable. They are calculated using one of the 

outer model analysis algorithms available. These scores may be understood as new columns in 

the data, with the same number of rows as the original data (unless a range-restricted analysis is 

conducted), and which generally tend to maximize the loadings and minimize the cross-loadings 

of a pattern matrix of loadings after an oblique rotation. 

    Latent variable error. An error variable that accounts for the variance in an endogenous 

latent variable that is not accounted for by the latent variable predictors that point at the 

endogenous latent variable. The terms “error” and “residual” are used interchangeably in this 

document. Nevertheless, they refer to subtly different entities. Technically speaking, the term 

“error” typically refers to the error variable in the true population model, which is assumed to be 

uncorrelated with latent variables other than the endogenous latent variable to which it is 

associated. Conversely, the term “residual” typically refers to the corresponding estimated error, 

the difference between the expected value of the latent variable and its point estimate, which in 

practice is often correlated with latent variables other than the endogenous latent variable to 

which it is associated. This is an example of a broader occurrence in multivariate analyses: more 

often than not sample-specific estimates violate assumptions about the theoretical true values, 

even if slightly. 

    Manifest variable. A manifest variable is one of several variables that are used to indirectly 

measure a latent variable. For example, “satisfaction with a meal” may be a latent variable 

measured through two manifest variables, which assume as values the answers on a 1 to 7 scale 

(1=strongly disagree; 7 strongly agree) to the following question-statements: “I am satisfied with 

this meal”, and “After this meal, I feel full”. 

    Minimum required sample size. The minimum required sample size needed for an SEM test 

to achieve an acceptable level of power (usually .8) depends on the effect size associated with 

the path coefficient under consideration and the significance level used for hypothesis testing 

(normally 0.05). The higher is the magnitude of a path coefficient at the population level, the 

higher is usually its effect size, and the greater is the probability that a true effect will be 

properly detected with a small sample. Therefore strong path coefficients at the population level, 

whether they are negative or positive, tend to require very small sample sizes for their proper 

identification. This software allows users to obtain estimates of the minimum required sample 

sizes for empirical studies based on the following model elements: the minimum absolute 

significant path coefficient in the model (e.g., 0.21), the significance level used for hypothesis 

testing (e.g., 0.05), and the power level required (e.g., 0.80). 

    Outer model. In a SEM analysis, the outer model is the part of the model that describes the 

relationships among the latent variables that make up the model and their indicators. In this 

sense, the weights and loadings are outer model parameter estimates. 

    Portable document format (PDF). This is an open standard file format created by Adobe 

Systems, and widely used for exchanging documents. It is the format used for this software’s 

documentation. 

    Power. Statistical power, often referred to simply as “power”, is a statistical test’s probability 

of avoiding type II errors, or false negatives. Power is often estimated for a particular coefficient 

of association and sample size, for samples drawn from a population, at a given significance 
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level (usually P < .05). For example, let us consider an SEM test employing PLS Mode A and 

bootstrapping. Let us assume that such a test is able to recognize a path coefficient as statistically 

significant, where the path coefficient is associated with a “real” effect at the population level of 

magnitude .2; which would be referred to as the “true” path coefficient. Let us also assume that 

the test correctly recognizes the path coefficient as significant 83 percent of the time when 

samples of size 150 are randomly taken from the population. Under these circumstances, we 

would conclude that the power of the test is 83 percent, or .83. 

    Q-squared coefficient. This measure is also known after its main proponents as the Stone-

Geisser Q-squared coefficient (Geisser, 1974; Kock, 2015d; Kock & Gaskins, 2014; Stone, 

1974). The Q-squared coefficient is a nonparametric measure traditionally calculated via 

blindfolding. It is used for the assessment of the predictive validity (or relevance) associated with 

each latent variable block in the model, through the endogenous latent variable that is the 

criterion variable in the block. The Q-squared coefficient is sometimes referred to as a 

resampling analog of the R-squared. It is often similar in value to that measure. The Q-squared 

coefficient can assume negative values. 

    Reflective latent variable. A reflective latent variable is one in which all of the indicators are 

expected to be highly correlated with the latent variable score, and also highly correlated with 

one another. For example, the answers to certain question-statements by a group of people, 

measured on a 1 to 7 scale (1=strongly disagree; 7 strongly agree) and answered after a meal, are 

expected to be highly correlated with the latent variable “satisfaction with a meal”. The question-

statements are: “I am satisfied with this meal”, and “After this meal, I feel full”. Therefore, the 

latent variable “satisfaction with a meal”, can be said to be reflectively measured through these 

two indicators. These indicators store answers to the two question-statements. This latent 

variable could be represented in a model graph as “Satisf”, and the indicators as “Satisf1” and 

“Satisf2”. 

    Reliability of a measurement instrument. Reliability is a measure of the quality of a 

measurement instrument; the instrument itself is typically a set of question-statements. A 

measurement instrument has good reliability if the question-statements (or other measures) 

associated with each latent variable are understood in the same way by different respondents. 

    R-squared coefficient. This is a measure calculated only for endogenous latent variables, and 

that reflects the percentage of explained variance for each of those latent variables. The higher 

the R-squared coefficient, the better is the explanatory power of the predictors of the latent 

variable in the model, especially if the number of predictors is small. Contrary to popular belief 

and in spite of what their name implies, R-squared coefficients are not calculated by squaring a 

correlation-like measure. They can assume negative values, although these are rare occurrences 

that normally suggest problems with the model in which they occur; e.g., severe collinearity or 

model misspecification. 

    Statistical power. Statistical power is often referred to simply as “power”; see the latter for a 

definition. 

    Structural equation modeling (SEM). A general term used to refer to a class of multivariate 

statistical methods where complex relationships among latent variables and indicators are 

estimated at once. In a SEM analysis, each latent variable is typically measured through multiple 

indicators, although there may be cases in which only one indicator is used to measure a latent 

variable. Key measures of relationships among latent variables are path coefficients (or 

standardized partial regression coefficients) and corresponding P values. Key measures of 
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relationships among latent variables and their respective indicators are weights and loadings, and 

corresponding P values. 

    Structural error. An error variable that accounts for the variance in an endogenous latent 

variable that is not accounted for by the latent variable predictors that point at the endogenous 

latent variable. A structural error is the same as a latent variable error; see the latter for an 

expanded definition. 

    Variance inflation factor (VIF). This is a measure of the degree of collinearity (or 

multicollinearity) among variables, including both indicators and latent variables. With latent 

variables, collinearity can take two main forms: vertical and lateral collinearity (Kock & Lynn, 

2012). Vertical, or classic, collinearity is predictor-predictor latent variable collinearity in 

individual latent variable blocks. Lateral collinearity is a term coined by Kock & Lynn (2012) 

that refers to predictor-criterion latent variable collinearity; a type of collinearity that can lead to 

particularly misleading results. Full collinearity VIFs allow for the simultaneous assessment of 

both vertical and lateral collinearity in a SEM model.   
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