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Abstract 

Use of the partial least squares (PLS) method has been on the rise among e-collaboration 
researchers. It has also seen increasing use in a wide variety of fields of research. This includes 
most business-related disciplines, as well as the social and health sciences. The use of the PLS 
method has been primarily in the context of PLS-based structural equation modeling (SEM). This 
article discusses a variety of advanced PLS-based SEM uses of critical coefficients such as 
standard errors, effect sizes, loadings, cross-loadings and weights. Among these uses are 
advanced mediating effects tests, comprehensive multi-group analyses, and measurement model 
assessments. 
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Introduction 

    The partial least squares (PLS) method has been increasingly used by e-collaboration 
researchers, as well as by researchers in related fields, such as information systems. It also has 
seen increasing use in most business-related areas of investigation, as well as in fields of research 
related to the social and health sciences. This is particularly the case in the context of PLS-based 
structural equation modeling (SEM). 
    This article discusses a variety of advanced tests used in PLS-based SEM, with a focus on 
tests that employ the following coefficients: standard errors, effect sizes, loadings, cross-
loadings, and weights. The discussion presented here builds on the software WarpPLS, version 
4.0 (Kock, 2013). The extensive set of outputs generated by this software makes it particularly 
useful in the illustration of the tests discussed (Kock, 2010; 2011a; 2011b), and allows for a 
straightforward discussion of the different steps involved in those tests. 
    As it will be clear in the following sections, the approach taken in this article is very hands-on. 
This article is aimed at practitioners who need to conduct multivariate analyses as part of their 
research, analyses that can sometimes be very complex and difficult to conduct, potentially 
creating a new source of errors. Hopefully this article will make their work somewhat easier, as 
well as less time-consuming and prone to errors, serving as a handy reference that they can go to 
whenever they need to conduct advanced mediating effects tests, comprehensive multi-group 
analyses, and measurement model assessments. 
 

Using standard errors and effect sizes for path coefficients 

    Standard errors and effect sizes for path coefficients are provided by WarpPLS in two tables 
where one standard error and effect size is provided for each path coefficient (see Figure 1). The 
effect sizes are analogous to Cohen’s (1988) f-squared coefficients, but calculated through a 
novel procedure (described below). Standard errors and effect sizes are provided in the same 
order as the path coefficients, so that users can easily visualize them; and, in certain cases, use 
them to perform additional analyses. 
    Standard errors and effect sizes are provided for “normal” latent variables, as well as for latent 
variables associated with moderating effects, which are essentially interaction latent variables. 
These are indicated in column and row names as products between latent variables. For example, 
the cell whose row is “Effe” and whose column is “Proc*Effi” refers to the moderating effect of 
the latent variable “Proc” on the link between “Effi” and “Effe”. 
    The effect sizes are calculated as the absolute values of the individual contributions of the 
corresponding predictor latent variables to the R-square coefficients of the criterion latent 
variable in each latent variable block. Unlike Cohen’s (1988) formula for estimation of effect 
sizes in multiple regression, which has a correction term in its denominator, WarpPLS calculates 
the exact values of the individual contributions of the corresponding predictor latent variables to 
the R-square coefficients of the criterion latent variable they point at. It does so by “freezing” 
parameters in successive calculations with the predictors included and excluded, leading to exact 
results and thus obviating the need for corrections. 
    With the effect sizes users can ascertain whether the effects indicated by path coefficients are 
small, medium, or large. The values usually recommended are 0.02, 0.15, and 0.35; respectively 
(Cohen, 1988). Values below 0.02 suggest effects that are too weak to be considered relevant 
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from a practical point of view, even when the corresponding P values are statistically significant; 
a situation that may occur with large sample sizes. 
 
Figure 1. Standard errors and effect sizes for path coefficients window 
 

 
 
 

Use in tests of mediating effects 
    One of the additional types of analyses that may be conducted with standard errors are tests of 
the significance of mediating effects using the approach discussed by Preacher & Hayes (2004), 
for linear relationships; and Hayes & Preacher (2010), for nonlinear relationships. The latter, 
discussed by Hayes & Preacher (2010), assumes that nonlinear relationships are force-modeled 
as linear; which means that the equivalent test using WarpPLS would use warped coefficients 
with the earlier linear approach discussed by Preacher & Hayes (2004). The classic approach 
used for testing mediating effects is the one discussed by Baron & Kenny (1986), which does not 
rely on standard errors. 
    The mediating effect significance test approach that employs standard errors for path 
coefficients is as follows. As discussed below, it applies to both linear and nonlinear path 
coefficients generated by nonlinear multivariate analysis software tools such as WarpPLS. 
    Let us assume that we have two latent variables, X and Y, and that we want to test whether 
another latent variable M is a significant mediator of the relationship between X and Y. One 
would normally build the following two models to conduct this test, and calculate all of the path 
coefficients and P values. 
    The first model would be a simple one, with only two variables and one link: 𝑋 → 𝑌. The 
second model would be a more complex one, with three variables and three links: 𝑋 → 𝑌 and 
𝑋 → 𝑀 → 𝑌. As a first step, the test entails calculating the path coefficients and corresponding P 
values in the first simple model and in the second more complex model, as well as the related 
standard errors in the second model. 
    Let us assume that the path coefficient in the first simple model (𝑋 → 𝑌) is 𝑟. Since this is a 
model with only two variables, the path coefficient 𝑟 is also the bivariate correlation between the 
two variables. The path coefficients in the second model are referred to as follows: 𝑎 for the 
𝑋 → 𝑀 link, 𝑏 for the 𝑀 → 𝑌 link, and 𝑐 for the 𝑋 → 𝑌 link. 
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    We then need to calculate a modified standard error for the product 𝑎 ∙ 𝑏, sometimes referred 
to as Sobel’s standard error, using the equation below. Next we calculate the critical ratio: 
𝑇�� = (𝑎 ∙ 𝑏) 𝑆��⁄ . This ratio is then used to calculate the P value associated with the product of 
coefficients 𝑎 ∙ 𝑏. 
 

        𝑆�� = �𝑏� ∙ 𝑆�� + 𝑎� ∙ 𝑆�� + 𝑆�� ∙ 𝑆�� 
 
    In practice one does not need to build the first simple model with WarpPLS, as the software 
automatically generates all of the bivariate correlations among latent variables. All one has to do 
is to get 𝑟 from the latent variable correlations table generated by WarpPLS. Also, at the time of 
this writing, a spreadsheet was available from www.warppls.com to automate the calculation of 
Sobel’s standard error, the product of path coefficients, as well as the critical ratios and P values 
discussed here. 
    For a mediating effect to be considered significant, the P value associated with the product of 
coefficients 𝑎 ∙ 𝑏 must be significant at a specified level (usually lower than .05). Additionally, 
the P values associated with 𝑎, 𝑏, and 𝑟 must also be significant. If these conditions are met, and 
the P value associated with 𝑐 is not significant, we can say that full mediation is occurring. If the 
P value associated with 𝑐 is significant, we can say that partial mediation is occurring. 
    It may be advisable, particularly in nonlinear analyses, to employ a variation of this test, which 
would entail using the total effect coefficient between X and Y, instead of 𝑟. The reason is that it 
is possible that 𝑟 will be low because two nonlinear effects will “cancel each other out” in a 
cross-sectional analysis, but yet will still be associated with a strong lagged effect (e.g., 
associated with a time lag). This strong lagged effect will be better captured through the use of 
the total effect coefficient between X and Y than with 𝑟; the latter may in some cases artificially 
suggest no effect. 
    An alternative approach to the analysis of mediating effects, which is arguably much less 
time-consuming and prone to error than the approaches mentioned above, would be to rely on the 
estimation of indirect effects. These indirect effects and related P values are automatically 
calculated by WarpPLS, and allow for the test of multiple mediating effects at once, including 
effects with more than one mediating variable. 
 

Use in multi-group analyses 
    Another type of analysis that can employ standard errors for path coefficients is what is often 
referred to as a multi-group analysis. One of the main goals of this type of analysis is to compare 
pairs of path coefficients for identical models but based on different samples. An example would 
be the analysis of the same model but with data collected in two different countries. 
    This is usually done by first calculating a pooled standard error (𝑆��) for each of the path 
coefficient pairs in the two models (see, e.g., Keil et al., 2000), using the equation below. In this 
equation, 𝑁� is the sample size for the first model, 𝑁� is the sample size for the second model, 𝑆� 
is the standard error for the path coefficient in the first model, and 𝑆� is the standard error for the 
path coefficient in the second model. 
 

        𝑆�� = �� (����)�

(�������)
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    The equation above assumes that the standard errors 𝑆� and 𝑆� are not significantly different 
from one another. That is, it assumes that the absolute difference between those standard errors is 
indistinguishable from zero; an assumption that is frequently met. If this assumption is violated, 
𝑆�� should be calculated based on a different equation. 
    Using this different equation, shown below, is often referred to as employing the Satterthwaite 
method. The Satterthwaite method is arguably more generic, but apparently less widely used. It 
also relies on a simpler equation, as can be seen below. Perhaps the reason why it is less widely 
used is that it frequently yields slightly higher values for 𝑆�� than the pooled standard error 
method; the differences are usually very small though. 
 

        𝑆�� = �𝑆�� + 𝑆�� 
 
    Following the calculation of 𝑆��, we then calculate the critical ratio: 𝑇�� = (𝛽� − 𝛽�) 𝑆��⁄  . 
Here (𝛽� − 𝛽�) is the difference between the path coefficients in the first and second models. 
This ratio (𝑇��) is then used to calculate the P value associated with the difference between the 
path coefficients. At the time of this writing, a spreadsheet was available from 
www.warppls.com to automate the calculation of the pooled and Satterthwaite standard errors, 
the critical ratios, and the associated P values. 
    The procedure just discussed focuses on path coefficients, which are structural model 
coefficients. This procedure should also be employed with weights. While with path coefficients 
researchers may be interested in finding statistically significant differences, with weights the 
opposite is typically the case – they will want to ensure that differences are not statistically 
significant. The reason is that significant differences between path coefficients can be artificially 
caused by significant differences between weights in different models. 
    Such differences may result from a form of common method bias due to questionnaire 
translation problems. This is a nontrivial issue in multi-group studies where data is collected in 
different countries with different languages and cultures. Common method bias can be tested 
based on full collinearity VIFs (Kock & Lynn, 2012), but only for a given sample. 
    With two separate samples from different countries, for example, common method bias could 
go unnoticed and significantly bias the results of a multi-group analysis. Let us assume that a 
study used of the same questionnaire in two different countries, where the questionnaire was 
translated from one language to another. The translation may have led to a change in meaning for 
some question-statements, which would be reflected in different weights. These different weights 
could then artificially inflate differences between path coefficients, suggesting between-country 
differences. 
    To rule out this possibility, one needs to ensure equivalence of measurement models, which 
would be indicated by equivalent weights, before structural model elements such as paths are 
compared. Here P values are expected to be greater, as opposed to lower, than a certain 
threshold. The recommended threshold is .10 for a conservative test. That is, P values should be 
greater than .10 for the conclusion that no significant differences exist. 
    This threshold of .10 is twice the .05 threshold used to ascertain that a significant difference 
exists. Both are based on one-tailed tests. A more relaxed approach would be to employ the same 
threshold of .05 for the tests involving both path coefficients and weights.  
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    Some would argue that loadings should be used as well in measurement model equivalence 
tests, in addition to weights, but in practice using loadings in addition to weights in these tests 
seems to lead to redundant results. 
 

Using combined loadings and cross-loadings 

    Combined loadings and cross-loadings are provided by WarpPLS in a table with each cell 
referring to an indicator-latent variable link (see Figure 2). Latent variable names are listed at the 
top of each column, and indicator names at the beginning of each row. In this table, the loadings 
are from a structure matrix (i.e., unrotated), and the cross-loadings from a pattern matrix (i.e., 
rotated). 
 
Figure 2. Combined loadings and cross-loadings window 
 

 
 
    As with other coefficients discussed earlier, indicator loadings and cross-loadings are provided 
for “normal” latent variables, as well as for latent variables associated with moderating effects. 
These are indicated in column and row names as products between latent variables and 
indicators, respectively. For example, the column “Proc*Effi” refers to an interaction latent 
variable, which itself is associated with one or more moderating effects of the latent variable 
“Proc” on the link or links between “Effi” and one or more latent variables. 
    Since loadings are from a structure matrix, and unrotated, they are always within the -1 to 1 
range. This obviates the need for a normalization procedure to avoid the presence of loadings 
whose absolute values are greater than 1. The expectation here is that loadings, which are shown 
within parentheses, will be high; and cross-loadings will be low. 
    WarpPLS uses the PLS regression algorithm as its default (Kock, 2012). This algorithm does 
not allow the structural (a.k.a. inner) model to influence the measurement (a.k.a. outer) model, 
which tends to minimize collinearity and avoid other problems. 
    A property of PLS regression is that, when only two indicators are used in one latent variable, 
their unrotated loadings are reported as being the same. This is not an indication of a problem, 
but the repetition in the table sometimes causes confusion among users of the software. 
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    Kaiser normalization can be employed to avoid these repeated values (this should be done 
automatically by the software starting in version 4.0 of WarpPLS). Through a Kaiser 
normalization, each row of a table of loadings and cross-loadings is divided by the square root of 
its communality. This has the effect of making the sum of squared values in each row add up to 
1. 
    P values are also provided for indicator loadings associated with all latent variables. These P 
values are often referred to as validation parameters of a confirmatory factor analysis, since they 
result from a test of a model where the relationships between indicators and latent variables are 
defined beforehand. 
    Conversely, in an exploratory factor analysis, relationships between indicators and latent 
variables are not defined beforehand, but inferred based on the results of a factor extraction 
algorithm. The principal components analysis algorithm is one of the most popular of these 
algorithms, even though it is often classified as being outside the scope of classical factor 
analysis. 
    Contrary to popular belief, PLS-based SEM is not a component-based form of SEM; at least 
not in the sense of principal components analysis. Often one sees researchers refer to PLS-based 
SEM as an analysis method that has two main stages: a principal components analysis, whereby 
weights and loadings are calculated; and a path analysis. This is incorrect. PLS-based SEM has 
two main stages: a PLS regression analysis, whereby weights and loadings are calculated; and a 
path analysis. Instead of PLS regression, variations known as PLS modes may be employed, but 
not a principal components analysis. 
    For research reports, users will typically use the table of combined loadings and cross-loadings 
provided by WarpPLS when describing the convergent validity of their measurement instrument. 
A measurement instrument has good convergent validity if the question-statements (or other 
measures) associated with each latent variable are understood by the respondents in the same 
way as they were intended by the designers of the question-statements. In this respect, two 
criteria are recommended as the basis for concluding that a measurement model has acceptable 
convergent validity: that the P values associated with the loadings be lower than 0.05; and that 
the loadings themselves be equal to or greater than 0.5 (Hair et al., 1987; 2009). Indicators for 
which these criteria are not satisfied may be considered for removal or reassignment to other 
latent variables. 
    These criteria do not apply to formative latent variable indicators, which are assessed in part 
based on P values associated with indicator weights. If the offending indicators are part of a 
moderating effect, then you should consider removing the moderating effect if it does not meet 
the requirements for formative measurement (discussed later). As previously noted, moderating 
effect latent variable names are displayed on the table as product latent variables (e.g., 
“Effi*Proc”). 
    Also as noted earlier, moderating effect indicator names are displayed on the table as product 
indicators (e.g., “Effi1*Proc1”). High P values for moderating effects, to the point of being non-
significant at the 0.05 level, may suggest multicollinearity problems; which can be further 
checked based on the latent variable coefficients generated by WarpPLS, more specifically, the 
full collinearity variance inflation factors (VIFs). 
    Some degree of collinearity is to be expected with moderating effects, since the corresponding 
product variables are likely to be correlated with at least their component latent variables. 
Moreover, moderating effects add nonlinearity to models, which can in some cases compound 
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multicollinearity problems. Because of these and other related issues, moderating links should be 
included in models with caution. 
    Standard errors are also provided for the loadings, in the column indicated as “SE”, for 
indicators associated with all latent variables. They can be used in specialized tests. Among other 
purposes, these standard errors can be used in multi-group analyses, with the same model but 
different subsamples, to ascertain measurement model equivalence. However, as mentioned 
earlier, if measurement model equivalence is tested based on weights, then testing it using 
loadings may be redundant. 
 

Using pattern loadings and cross-loadings 

    Pattern loadings and cross-loadings are provided by WarpPLS in a table with each cell 
referring to an indicator-latent variable link (see Figure 3). Latent variable names are listed at the 
top of each column, and indicator names at the beginning of each row. In this table, both the 
loadings and cross-loadings are from a pattern matrix (i.e., rotated). 
 
Figure 3. Pattern loadings and cross-loadings window 
 

 
 
    Since these loadings and cross-loadings are from a pattern matrix, they are obtained after the 
transformation of a structure matrix through a widely used oblique rotation frequently referred to 
as Promax. The structure matrix contains the Pearson correlations between indicators and latent 
variables, which are not particularly meaningful prior to rotation in the context of measurement 
instrument validation. 
    Rotated loadings and cross-loadings are particularly useful in the visual identification by users 
of mismatches between indicators and latent variables. Such mismatches are usually associated 
with low loadings and high cross-loadings. 
    Because an oblique rotation is employed, in some cases loadings may be higher than 1 
(Rencher, 1998). This could be a hint that two or more latent variables are collinear, although 
this may not necessarily be the case; better measures of collinearity among latent variables are 
the full collinearity VIFs reported by WarpPLS with other latent variable coefficients. 
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    The main difference between oblique and orthogonal rotation methods is that the former 
assume that there are correlations, some of which may be strong, among latent variables. A case 
can easily be made in favor of oblique rotation methods in SEM analyses, because by definition 
latent variables are expected to be correlated. 
    Without correlations among latent variables, no path coefficient would be significant. 
Technically speaking, it is possible that a research study would hypothesize only neutral 
relationships between latent variables, but one does not usually find published examples of 
research studies where this happens. 
 

Using structure loadings and cross-loadings 

    Structure loadings and cross-loadings are provided by WarpPLS in a table with each cell 
referring to an indicator-latent variable link (see Figure 4). Latent variable names are listed at the 
top of each column, and indicator names at the beginning of each row. In this table, both the 
loadings and cross-loadings are from a structure matrix (i.e., unrotated). Often these are the only 
loadings and cross-loadings provided by other PLS-based SEM software tools. 
 
Figure 4. Structure loadings and cross-loadings window 
 

 
 
    As the structure matrix contains the Pearson correlations between indicators and latent 
variables, this matrix is not particularly meaningful or useful prior to rotation in the context of 
collinearity or measurement instrument validation. Here the unrotated cross-loadings tend to be 
fairly high, even when the measurement instrument passes widely used validity and reliability 
test criteria. 
     Still, some researchers recommend using this table as well to assess convergent validity, by 
following two criteria: that the cross-loadings be lower than 0.5; and that the loadings be equal to 
or greater than 0.5 (Hair et al., 1987; 2009). Note that the loadings here are the same as those 
provided in the combined loadings and cross-loadings table. The cross-loadings, however, are 
different. 
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Using indicator weights 

    Indicator weights are provided by WarpPLS in a table, much in the same way as indicator 
loadings are (see Figure 5). All cross-weights are zero, because of the way they are calculated 
through PLS regression. Each latent variable score is calculated as an exactly linear combination 
of its indicators, where the weights are multiple regression coefficients linking the indicators to 
the latent variable. 
 
Figure 5. Indicator weights window 
 

 
 
    P values are provided for weights associated with all latent variables. These values can also be 
seen, together with the P values for loadings, as the result of a confirmatory factor analysis. In 
research reports, users may want to report these P values as an indication that formative latent 
variable measurement items were properly constructed. This also applies to moderating latent 
variables that pass criteria for formative measurement, when those variables do not pass criteria 
for reflective measurement. 
    As in multiple regression analysis (Miller & Wichern, 1977; Mueller, 1996), it is 
recommended that weights with P values lower than 0.05 be considered valid items in a 
formative latent variable measurement item subset. Formative latent variable indicators whose 
weights do not satisfy this criterion may be considered for removal.  
    The reference to multiple regression made here is due to the fact that the weights linking 
indicators to their latent variables, at the measurement model level, are equivalent to the 
standardized partial regression coefficients linking independent to dependent variables in a 
typical multiple regression model. The same can generally be said with respect to the path 
coefficients in individual latent variable blocks. There are indeed many parallels between PLS-
based SEM and multiple regression analyses. 
    With the P values provided for weights, users can also check whether moderating latent 
variables satisfy validity and reliability criteria for formative measurement, if they do not satisfy 
criteria for reflective measurement. This can help users demonstrate validity and reliability in 
hierarchical analyses involving moderating effects, where double, triple etc. moderating effects 
are tested. For instance, moderating latent variables can be created, added to the model as 
standardized indicators, and then their effects modeled as being moderated by other latent 
variables; an example of double moderation. 
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    In addition to P values, VIFs are also provided for the indicators of all latent variables, 
including moderating latent variables. These can be used for indicator redundancy assessment. In 
reflective latent variables indicators are expected to be redundant. This is not the case with 
formative latent variables. In formative latent variables indicators are expected to measure 
different facets of the same construct, which means that they should not be redundant. 
    The VIF threshold of 3.3 has been recommended in the context of PLS-based SEM in 
discussions of formative latent variable measurement (Cenfetelli & Bassellier, 2009; Petter et al., 
2007). A rule of thumb rooted in the use of WarpPLS for many SEM analyses in the past 
suggests an even more conservative approach: that capping VIFs to 2.5 for indicators used in 
formative measurement leads to improved stability of estimates. 
    The multivariate analysis literature, however, tends to gravitate toward higher VIF thresholds, 
such as 5 and 10. One of the reasons for this is that this literature tends to refer to directly 
measured variables, not latent variables; particularly not latent variables resulting from 
collinearity minimization algorithms such as PLS regression. In models with latent variables 
measured through single indicators, which are not “true” latent variables, the use of higher VIF 
thresholds may well be justified. 
    Also, capping VIFs at 2.5 or 3.3 may in some cases severely limit the number of possible 
indicators available. Given this, it is recommended that VIFs be capped at 2.5 or 3.3 if this does 
not lead to a major reduction in the number of indicators available to measure formative latent 
variables. One example would be the removal of only 2 indicators out of 16 by the use of this 
rule of thumb. Otherwise, the criteria below should be employed. 
    Two criteria, one more conservative and one more relaxed, are recommended by the 
multivariate analysis literature in connection with VIFs in this type of context. More 
conservatively, it is recommended that VIFs be lower than 5; a more relaxed criterion is that they 
be lower than 10 (Hair et al., 1987; 2009; Kline, 1998). 
    High VIFs usually occur for pairs of indicators in formative latent variables, and suggest that 
the indicators measure the same facet of a formative construct. This calls for the removal of one 
of the indicators from the set of indicators used for the formative latent variable measurement. 
    These criteria are generally consistent with formative latent variable theory (see, e.g., 
Diamantopoulos, 1999; Diamantopoulos & Winklhofer, 2001; Diamantopoulos & Siguaw, 
2006). Among other characteristics, formative latent variables are expected, often by design, to 
have many indicators.  
    Yet, given the nature of PLS regression and related algorithms, indicator weights will 
normally go down as the number of indicators go up, as long as those indicators are somewhat 
correlated, and thus P values will normally go up as well. Moreover, as more indicators are used 
to measure a formative latent variable, the likelihood that one or more will be redundant 
increases. This will be reflected in high VIFs. 
    As with indicator loadings, standard errors are also provided here for the weights, in the 
column indicated as “SE”, for indicators associated with all latent variables. These standard 
errors can be used in specialized tests. Among other purposes, they can be used in multi-group 
analyses, with the same model but different subsamples. 
    As discussed earlier, here users may want to compare the measurement models to ascertain 
equivalence, using a multi-group comparison technique such as the one discussed earlier, and 
thus ensure that any observed between-group differences in structural model coefficients, 
particularly in path coefficients, are not due to measurement model differences. 
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Discussion and conclusion 

    The PLS method has been increasingly used by e-collaboration researchers, as well as by 
researchers in other fields. This has been particularly true in the context of SEM, although it has 
also been the case in more basic tests such as variations of ANOVA, ANCOVA, MANOVA, 
MANCOVA, multiple regression, and path analysis. Conceptually, these more basic tests can all 
be seen as special cases of SEM. 
    This article discussed a variety of tests that are routinely used in the context of PLS-based 
SEM, and that can also be selectively used in more basic tests. The focus of the discussion is on 
tests that employ critical coefficients such as standard errors, effect sizes, loadings, cross-
loadings and weights. 
    Several recommendations were made here. With the effect sizes users can ascertain whether 
the effects indicated by path coefficients are small, medium, or large. The values usually 
recommended are 0.02, 0.15, and 0.35; respectively. Standard errors can be used in advanced 
tests of mediating effects and multi-group analyses. 
    Loadings and cross-loadings can be used in various tests, particularly validity tests. This 
applies to rotated and unrotated loadings and cross-loadings. It also applies to loadings and 
cross-loadings obtained with or without Kaiser normalization adjustments. As loadings and 
cross-loadings can be used in various tests, so can weights, particularly in the context of 
formative latent variable measurement. 
    With respect to multi-group analyses, one key issue must be highlighted. The procedure 
discussed here in connection with path coefficients should also be employed with weights. The 
reason is that differences between path coefficients can be caused by differences between 
weights in different models. Therefore, one needs to ensure that the models are equivalent with 
respect to their measurement, which would be indicated by non-significant differences in 
weights, before structural coefficients (e.g., path coefficients) are compared. 
    The approach taken in this article is very applied, with illustrations based on the software 
WarpPLS that were aimed to be as clear and straightforward as possible. The article is aimed at 
practitioners who need to conduct multivariate analyses as part of their research investigations. 
These analyses can sometimes be very complex, difficult, and time-consuming. Hopefully this 
article will make the work of these applied researchers a little easier. 
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