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Variance-based structural equation modeling is extensively used in information systems research, and many 
related findings may have been distorted by hidden collinearity. This is a problem that may extend to 
multivariate analyses, in general, in the field of information systems as well as in many other fields. In multivariate 
analyses, collinearity is usually assessed as a predictor-predictor relationship phenomenon, where two or more 
predictors are checked for redundancy. This type of assessment addresses vertical, or “classic”, collinearity. 
However, another type of collinearity may also exist, here called “lateral” collinearity. It refers to predictor-
criterion collinearity. Lateral collinearity problems are exemplified based on an illustrative variance-based 
structural equation modeling analysis. The analysis employs WarpPLS 2.0, with the results double-checked with 
other statistical analysis software tools. It is shown that standard validity and reliability tests do not properly 
capture lateral collinearity. A new approach for the assessment of both vertical and lateral collinearity in 
variance-based structural equation modeling is proposed and demonstrated in the context of the illustrative 
analysis. 
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1. Introduction 
The concepts of collinearity and correlation are often confused, even though they are distinct 
concepts (Hair, Black, Babin, & Anderson, 2009; Hamilton, 1987). Collinearity is a multivariate notion, 
whereas correlation refers to a pair of variables. Two or more variables are said to be collinear when 
they measure the same attribute of an object; the latter is also called a construct. In this sense, the 
variables “satisfaction with a technology” and “excitement about the technology” may be collinear, if 
the question-statements related to these two variables are seen as referring to the same object 
attribute “affective response to the technology” by the respondents of a questionnaire. Two variables 
are said to be correlated if they vary in concert with each other, even though the variables may 
measure totally different object attributes; for example, a person’s weight from 1 to 20 years of age, 
and the price of gasoline during those years. 
 
Collinearity is usually assessed in models with multiple variables as a possible predictor-predictor 
redundancy phenomenon. This is what is referred to here as vertical, or “classic”, collinearity. Another 
type of collinearity may also exist, called here “lateral” collinearity. It refers to predictor-criterion 
collinearity. Unlike vertical collinearity, lateral collinearity is almost never explicitly tested for in 
multivariate analyses. (For reference, these and other key terms are listed in alphabetical order, with 
their respective definitions, in Appendix A.) 
 
Lateral collinearity typically occurs when two variables that are hypothesized to be causally related 
measure the same construct. In a causal model, the two variables would be shown as linked by an 
arrow, with one pointing at the other. Lateral collinearity can lead to misleading results in a “stealth” 
way, because it can be masked by the appearance of a strong causal effect in the model. Strong 
causal effects are usually what researchers are interested in finding, since they provide decisive 
support for the researchers’ hypotheses. 
 
We present an extended discussion of vertical and lateral collinearity and follow it with an illustration 
based on a variance-based structural equation modeling (SEM) analysis of data related to electronic 
communication in innovation teams. We use the analysis to exemplify collinearity, and do not present 
it as a standalone empirical contribution. By focusing on variance-based SEM, our illustration 
addresses the vast majority of univariate and multivariate data analysis techniques used in behavioral 
studies, which are conceptually special cases of SEM. 
 
Variance-based SEM is a method to which pioneering information systems researchers contributed 
extensively (Chin, 1998; Chin, Marcolin, & Newsted, 2003), and which is used extensively in the field 
of information systems. Variance-based SEM is still methodologically underdeveloped when 
compared with covariance-based SEM (Haenlein & Kaplan, 2004; Hair et al., 2009; Schumacker & 
Lomax, 2004), even though it offers some distinct advantages that make it attractive to researchers in 
various fields (Chin, 1998; Chin & Todd, 1995; Fornell & Bookstein, 1982; Haenlein & Kaplan, 2004; 
Sun & Zhang, 2006). 
 
We show that lateral collinearity can lead to misleading results and that this type of collinearity may 
occur “below the radar screen” as far as widely used validity and reliability tests are concerned. That 
is, standard validity and reliability tests do not properly capture lateral collinearity. We propose and 
demonstrate a new approach for the assessment of both vertical and lateral collinearity in the context 
of the illustrative analysis. The new approach allows for the concurrent assessment of vertical and 
lateral collinearity. 

2. Relevance for Information Systems 
We conducted a review of articles published between 2001 and 2011 in the following refereed 
journals: Information Systems Research (ISR), Journal of the Association for Information Systems 
(JAIS), and MIS Quarterly (MISQ). We conducted tests of collinearity in the context of empirical 
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quantitative studies in 17 out of 361 articles in ISR, 7 out of 331 articles in JAIS, and 8 out of 385 
articles in MISQ. None of those tests addressed lateral collinearity. 
 
This situation is problematic because lateral collinearity may exist even when correlations among 
variables in multivariate analyses are relatively low (see discussion on correlation versus collinearity 
in Appendix B). Correlations must exist among variables for associations suggestive of causal 
relationships to be discovered. Notably, these correlations must occur in “lateral” relationships, which 
are the types of relationships that refer to hypothesized causal links. However, not only is collinearity 
different from correlation, but also collinearity cannot be reliably inferred from correlation values alone 
except for very simple models. 
 
The likely negative impact of hidden lateral collinearity on theory development is particularly 
problematic, because it would allow researchers to find strong but artificial support for hypothesized 
causal relationships. That is, mistakes would be made in connection with the causal relationships 
themselves, as opposed to arguably more benign mistakes in the identification of redundancies among 
hypothesized predictors in causal relationships stemming from hidden vertical collinearity. Causal 
relationships are the epistemological essence of many theoretical models (Audi, 2003; Popper, 1992), 
which are frequently defined by those relationships (Bagozzi, 1980; Davis, 1985; Maruyama, 1998). 
 
This paper’s relevance for the field of information systems stems not only from the absence of lateral 
collinearity tests in published research in the field, but also from its contribution to solidifying the 
position of information systems as a reference field (Baskerville & Myers, 2002; Grover, Gokhale, 
Lim, Coffey, & Ayyagari, 2006). This paper contributes to solidifying the position of information 
systems as a reference field by addressing methodological issues that, while demonstrably relevant 
to the field of information systems, are also likely to be relevant to many other fields. This includes 
fields within and outside business, and extends to most fields employing multivariate data analysis 
methods. 

3. Covariance- and Variance-Based SEM 
Most basic and intermediate statistical tests used in behavioral studies can be shown to be special 
cases of multiple regression analysis. Those basic statistical tests include t tests, bivariate (a.k.a. 
univariate) correlation analyses, ANOVA, ANCOVA, MANOVA, and MANCOVA (Hair et al., 2009; 
Rosenthal & Rosnow, 1991). Multiple regression analysis can, in turn, be seen as a special case of 
path analysis, as path models are made up of interconnected blocks of variables with one or more 
predictor variables pointing at a single criterion variable. SEM is essentially path analysis with latent 
variables (Chin, 1998; Chin & Todd, 1995; Schumacker & Lomax, 2004), whereas each variable in a 
path model is measured through multiple indicators (e.g., multiple questions referring to the same 
construct in a questionnaire). 
 
Therefore, all of the aforementioned statistical tests, including multiple regression and path analyses, 
can be seen as special cases of SEM (Kline, 1998; Maruyama, 1998; Mueller, 1996). In SEM latent 
variables are used in models instead of directly measured variables, which are (the latter) often 
referred to as indicators. Latent variables are obtained through iterative algorithms with specific 
criteria for convergence (Jo ̈reskog & Wold, 1982; Schumacker & Lomax, 2004). 
 
Latent variables are used in SEM to both minimize measurement error and collinearity; they also 
allow for instrument validity and reliability assessments (Gefen & Straub, 2005; Gefen, Straub, & 
Boudreau, 2000; Mueller, 1996; Schumacker & Lomax, 2004). These essentially allow researchers to 
check whether the results of SEM analyses can be trusted. 
 
SEM techniques are usually divided into two main groups, covariance-based and variance-based (Chin, 
1998; Fornell & Larcker, 1981; Schumacker & Lomax, 2004). They are also frequently referred to by 
other names, notably maximum likelihood and PLS-based SEM, respectively (Fornell & Bookstein, 
1982; Jöreskog & Wold, 1982; Kline, 1998). The acronym “PLS” stands for either “partial least squares” 
or “projection to latent structures”; the first form is the most common, even though the second form was 
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the originally intended form by Herman Wold, who is widely regarded as the creator of the technique 
(Adelman & Lohmoller, 1994; Jo ̈reskog & Wold, 1982; Wold, Trygg, Berglund, & Antti, 2001). 
 
It is generally and incorrectly believed that the calculation of latent variable scores in variance-based 
SEM eliminates collinearity among latent variables. Variance-based SEM has, indeed, been shown to be 
particularly effective at minimizing collinearity among latent variables (Chin et al., 2003; Haenlein & 
Kaplan, 2004), but collinearity may still remain if different latent variables are redundant (Temme, Kreis, & 
Hildebrandt, 2006), even when the measurement instrument passes general validity and reliability tests. 
 
The work of various researchers, especially Karl Gustav Jöreskog, established covariance-based 
SEM as the most widely used method for SEM (Haenlein & Kaplan, 2004; Hair et al., 2009; 
Schumacker & Lomax, 2004). Variance-based SEM is a very different method (see, e.g., Haenlein & 
Kaplan, 2004; McDonald, 1996) and is still relatively underdeveloped. Much of its current 
development has been due to the pioneering work of researchers in the field of information systems, 
mostly notably Wynne Chin (Chin, 1998; Chin et al., 2003). 
 
The underdevelopment of variance-based SEM hampers its broad utilization even though variance-
based SEM can be complementary to covariance-based SEM (Chin, 1998; Haenlein & Kaplan, 2004; 
Sun & Zhang, 2006), estimating coefficients with similar interpretations but with different underlying 
algorithms (Chin & Todd, 1995; Fornell & Bookstein, 1982; Goodhue, Lewis, & Thompson, 2006; 
Marcoulides & Saunders, 2009; Marcoulides, Chin, & Saunders, 2009). While there are techniques by 
which collinearity may be indirectly or directly assessed in covariance-based SEM, such as the common 
method factor technique (Lindell & Whitney, 2001), this is not yet the case with variance-based SEM. 

4. Vertical Collinearity 
Two or more variables are said to be collinear if they measure the same underlying attribute of a 
tangible or intangible object (Echambadi & Hess, 2007; Miller & Wichern, 1977). In survey research, 
manifest variables are often measured based on answers to questions on Likert-type scales (Ju, 
Chen, Sun, & Wu, 2006; Schumacker & Lomax, 2004). The questions are meant to refer to similar 
mental representations in the researcher’s mind (usually the designer of the questionnaire), as well as 
in the respondents’ minds, and to cluster around latent variables. Latent variables are differentiated 
from manifest variables by not being measured directly. Both manifest variables and latent variables 
may present collinearity. 
 
Latent variables reflect constructs. For the purposes of the discussion presented here, a construct is 
defined as a mental representation of an attribute of an object (Audi, 2003; Popper, 1992). The nature 
of a construct may vary across different individuals. For example, a researcher designing a 
questionnaire may have one mental representation of an attribute of an object, such as ease of use 
(attribute) of a particular information technology (object), but the respondents of the questionnaire 
may have a different mental representation. 
 
Variables may be strongly correlated and yet have a low degree of collinearity (Hamilton, 1987). Yet, 
collinearity is often conflated with correlation (Douglass, Clader, Christy, & Michaels, 2003; Graham, 
2003), since the presence of correlation is a necessary but not sufficient condition to characterize 
collinearity. Moreover, the relationship between correlation and collinearity, as generally measured, is 
nonlinear (see Appendix B). 
 
Vertical collinearity is a “classic” type of collinearity in that it is traditionally assessed in multiple 
regression analyses (Echambadi & Hess, 2007; Hair et al., 2009). Multiple regression analyses 
estimate coefficients of association between multiple predictor variables (a.k.a. independent 
variables) and one criterion variable (a.k.a. dependent variable). In this context, vertical collinearity 
refers to predictor-predictor collinearity (Graham, 2003; Sengupta & Bhimasankaram, 1997). 
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Figure 1 illustrates the target of a vertical, or “classic”, collinearity test in a block with n  predictor 
latent variables 1LVp , 2LVp , 3LVp … nLVp  pointing at one criterion latent variable LVc . Any model 
used in variance-based SEM analyses can be decomposed into multiple blocks like this. 
 

LVp1LVp1

LVcLVc

LVp2LVp2

LVp3LVp3

…

LVpnLVpn

Vertical collinearity: 
Collinearity among LV 
predictors

 
Figure 1. Vertical, or “Classic”, Collinearity 

 
There is a vast literature on vertical collinearity, dating back more than 30 years (Mosteller & 
Tukey, 1977). This literature includes multiple procedures and coefficients proposed to measure 
vertical collinearity (Douglass et al., 2003). More recently, vertical collinearity has been usually 
assessed through the calculation of a variance inflation factor (VIF) for each of the predictor latent 
variables, and the comparison of these VIFs with a threshold (Hair et al., 2009; Kline, 1998). The 
increasing use of the VIF as a measure of vertical collinearity has been enabled by the widespread 
use of powerful personal computers, as its calculation is fairly computing-intensive in models with 
multiple predictor variables. 
 
Each VIF is calculated as indicated in Equation (1) where i  is an index that refers to each predictor 
variable in a regression equation containing only the predictors (i.e., excluding the criterion) in each 
block of variables in an SEM model. The term 2

iR  refers to the variance explained for each predictor 
(indexed by i ) by all of the remaining predictors. As it can be seen, the VIFs are calculated 
independently of the criterion variable. That is, the VIFs take into consideration only the effects of the 
predictor variables on themselves. 
 

(1) 21
1

i
i R

VIF
−

=  

 
Situations in which variables are correlated yet not collinear are actually quite common in multivariate 
analyses (Echambadi & Hess, 2007; Hair et al., 2009). If correlation and collinearity always occurred 
together, no “real” causal effects would ever be supportable by multivariate analyses. In SEM, 
collinearity often stems from a mismatch between the research instrument designer’s view of 
indicator-construct relationships and those of the respondents or data analysts. The latter may be 
researchers other than the instrument’s designer. 
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For example, let us assume that a researcher designed a questionnaire assuming two constructs to 
be distinct, in an investigation on the success of product innovation teams. The two constructs are 
“team success in terms of sales” and “team success in terms of return on investment”. The 
researcher developed question-statements associated with these two constructs, which were 
answered based on Likert-type scales. The answers led to two sets of indicators, which the 
researcher assumed to be associated with two distinct latent variables (i.e., “team success in terms of 
sales” and “team success in terms of return on investment”). 
 
A problem of collinearity would exist if the respondents perceived the two latent variables as 
measuring the “same thing”. That is, if the respondents could not see the difference in the question-
statements for the indicators used in each of the two latent variables in the same way that the 
researcher did. This “same thing” could be another construct such as “team success”, which would 
have subsumed the two constructs in the eyes of the respondents. 

5. Lateral Collinearity 
Vertical collinearity is not the only type of collinearity that can distort the results of multivariate 
analyses, in general, and variance-based SEM analyses, in particular. In the same way that predictor 
variables may be collinear with each other, predictor variables may also be collinear with a criterion 
variable. That is, collinearity may occur in both the “vertical” and “lateral” directions in a block with 
multiple predictors pointing at one criterion variable. 
 
Figure 2 illustrates the occurrence of lateral collinearity in the context of variance-based SEM. It 
shows a block with n  predictor latent variables 1LVp , 2LVp , 3LVp … nLVp  pointing at one criterion 
latent variable LVc . As mentioned before, any variance-based SEM model can be decomposed into 
multiple blocks like this. Here the collinearity is indicated as involving 3LVp  and LVc . (This is done 
for illustration purposes only; the collinearity could have involved more than one predictor.) That is, 
the collinearity occurs in a “lateral” way, which is why it is referred to here as “lateral collinearity”. 
 

LVp1LVp1

LVcLVc

LVp2LVp2

LVp3LVp3

…

LVpnLVpn

Lateral collinearity: 
Collinearity among LV 
predictors and criteria

 
Figure 2. Lateral Collinearity 

 
Lateral collinearity is almost never explicitly tested in multivariate analyses, nor is it explicitly 
addressed in widely used textbooks on multivariate analyses (Hair et al., 2009; Schumacker & 
Lomax, 2004), even though it can lead to very misleading conclusions. One of the reasons is that the 
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variables in question do not point at any other variable, creating a problem for the calculation of VIFs 
(Hair et al., 2009; Kline, 1998). 
 
Collinearity between 3LVp  and LVc  would have the effect of making the coefficient of association 
between these two latent variables appear to be very strong and statistically significant. This could 
lead to the misleading conclusion that 3LVp  is a strong predictor of LVc , when in reality, the strong 
association is due to both latent variables essentially measuring the same “thing” (i.e., the same 
construct). The conclusion that 3LVp  is a strong predictor of LVc  may, in turn, form the basis for 
misguided and possibly costly organizational decisions aimed at manipulating 3LVp  and LVc . 

6. What VIF Threshold Should Be Used? 
Much divergence exists in the literature regarding the VIF value to be used as the threshold for 
collinearity (Cenfetelli & Bassellier, 2009; Kline, 1998; Petter, Straub, & Rai, 2007). Commonly 
recommended values are 10, 5, and 3.3; meaning that a VIF equal to or greater than the threshold 
value would suggest the existence of collinearity among the variables (a.k.a. multicollinearity). Such 
divergence is problematic, because it makes it difficult to derive clear-cut methodological guidelines 
for researchers, and is in part due to the different contexts in which these values were proposed. 
 
Hair et al. (2009, p.193) state that: “A common threshold is … a VIF value above 10”. But, at the 
same time, they also state that: “Each researcher must determine the degree of collinearity that is 
acceptable, because most defaults or recommended thresholds still allow for substantial collinearity”. 
The indirect message buried in such ambiguous advice is that a threshold of 10 should probably be 
considered a minimum threshold in multivariate models, in general, and that lower thresholds may be 
advisable under certain conditions. 
 
Kline (1998) proposes a VIF threshold of 5 in the context of covariance-based SEM. It should be 
noted, however, that variance-based SEM employs PLS regression or variations of it for the 
calculation of the weights to be assigned to each indicator in a latent variable (Lohmöller, 1989; Wold 
et al., 2001). Even though PLS regression does not eliminate collinearity, it is particularly effective at 
minimizing it (Chin et al., 2003; Haenlein & Kaplan, 2004). Because of this, one could reasonably 
expect that a VIF threshold of 5 might be too high in variance-based SEM. 
 
The VIF threshold of 3.3 has been recommended in the context of variance-based SEM, but in 
discussions of formative latent variable measurement (Cenfetelli & Bassellier, 2009; Petter et al., 
2007). In these discussions, the threshold of 3.3 refers to the VIF values calculated for each of the 
indicators of a formative latent variable, where the indicators are seen as predictors of the latent 
variable score. This threshold does not refer to the VIF values for the scores of various latent 
variables that may be collinear, which is the main focus of this paper, and which would have been 
minimized via PLS regression. Therefore, even this threshold may well be too high for investigations 
aimed at uncovering lateral collinearity between latent variables in variance-based SEM. 
 
The above point can be illustrated based on the minor effect that the introduction of moderating 
effects usually has in the VIF values calculated in the context of variance-based SEM. The addition of 
moderating effects tends to add collinearity to a SEM model, because the latent variables that 
represent the moderating effects are at least somewhat correlated with the pairs of variables that 
gave origin to them (Carte & Russel, 2003; Echambadi & Hess, 2007). Latent variables representing 
moderating effects are normally implemented as product-indicator interaction latent variables, based 
on the indicators of the moderating variable and the predictor variable of the predictor-criterion link 
that is being moderated (Chin et al., 2003). 
 
However, the collinearity inflation caused by the introduction of moderating effects is countered by the 
collinearity minimization nature of the PLS regression algorithm, frequently leading to VIF values 
lower than 2 even with multiple moderating effects added (see Appendix G). This, of course, is based 
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on the assumption that there would be no collinearity in the original model without the moderating 
effects; in such cases, the original VIF values would also typically be lower than 2. 
 
Given the above discussion, we use the VIF value threshold of 3.3 in the remainder of this paper. 
That is, VIF values higher than 3.3 will be considered as indicative of collinearity, for the purposes of 
the arguments presented here, but with a caveat. This decision is accompanied by the caveat that 
more research is needed in the future to establish whether this threshold is truly adequate for 
collinearity tests involving multiple latent variables in the context of variance-based SEM. Such 
research is beyond the scope of this paper. 

7. An Illustrative Example 
The analysis used to illustrate the problem of lateral collinearity explored associations among 
several latent variables, which were conceptualized as attributes of teams engaged in product 
innovation efforts. The efforts led to the creation of new products or major redesign of existing 
products. The products comprised manufacturing goods, services, and information products. 
Teams had on average 24 individuals, were usually geographically dispersed, and used a variety of 
electronic communication media to support their work. We analyzed data from 290 innovation 
teams from organizations in the Northeastern USA. 
 
Since the study is used for illustration purposes, it is not the goal here to provide a new empirical 
contribution through it. This should essentially be seen as a “toy” study, so to speak, even though it is 
based on reasonable assumptions so as to make it meaningful for information systems researchers. 
The main idea underlying the study was that a high degree of electronic communication media variety 
(i.e., use of a variety of technologies, each creating a communication medium with different 
characteristics) would be beneficial for the innovation teams; an idea that has been articulated by 
Watson-Manheim & Bélanger (2007). 
 
According to this view, a high degree of electronic communication media variety would increase the 
teams’ ability to employ project management techniques and conduct their work efficiently, which 
would eventually lead to increased success in “bottom-line” aspects such as sales and return on 
investment (Bélanger & Watson-Manheim, 2006; Colazo & Fang, 2010; Kerzner, 2005; Watson-
Manheim & Bélanger, 2002; Watson-Manheim & Bélanger, 2007). 
 
Note that the focus of this particular investigation was on electronic communication media variety, not 
degree of overall electronic communication media use or its relationship with face-to-face 
communication. We expected the benefits to stem from a positive association between a team’s 
electronic communication media variety and the team’s ability to manage its work in a way that led to 
gains in efficiency. Those gains were expected to lead to downstream gains in team success, in 
terms of both sales and return on investment. These relationships are depicted in the model shown 
on Figure 3 (next page). Appendix C contains the measurement instrument used. 
 
The latent variable electronic communication media variety (ECMV) refers to the number of tools 
reported as used “substantially” by each innovation team, where “substantially” means that the use of 
the tools was above the mid-point of their Likert-type use scales. Team project management (Prjmgt) 
refers to the extent to which an innovation team employed standard project management techniques 
to organize its work; for example, following a clear plan with milestones, and monitoring the team’s 
progress and associated costs. Team efficiency (Effic) refers to the extent to which a team met its 
original goals in terms of completion time and budget. 
 
Team success in terms of sales (SSucce) refers to the extent to which a new product, developed by 
an innovation team, met or exceeded sales expectations. Team success in terms of return on 
investment (RSucce) refers to the extent to which a new product met or exceeded return on 
investment expectations. The hypothesized relationship between these two variables was based on 
the assumption that a product first has to sell well to generate a good return on investment; that is, 
without sales there can be no return on investment (Kerzner, 2005; Reich & Wee, 2006). 
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Electronic 
communication 
media variety 

(ECMV)

Team success in 
terms of sales 

(Ssucce)

Team project 
management 

(Prjmgt)

Team efficiency 
(Effic)

Team success in 
terms of return on 

investment
(Rsucce)

 
Figure 3. Structural Model with Constructs 
 
We conducted the SEM analysis with the software WarpPLS 2.0 (Kock, 2011) and used PLS 
regression, which is one of the most effective multivariate algorithms used in variance-based SEM for 
minimization of collinearity (Haenlein & Kaplan, 2004; Hair et al., 2009; Jo ̈reskog & Wold, 1982; 
Temme et al., 2006; Wold et al., 2001). The software conveniently calculates VIFs and several other 
parameters that can be used in a comprehensive and concurrent assessment of validity, reliability, 
and collinearity. As it will be shown, a model may contain “hidden” lateral collinearity and still pass 
standard tests of validity, reliability, and vertical collinearity. 
 
Since WarpPLS is a relatively new software tool, we double-checked the results with three other 
statistical analysis software tools: MATLAB, SPSS, and PLS-Graph. (MATLAB is essentially a 
numeric computing tool with extensive support for statistical analyses.) These statistical software 
tools either generate partial results that must be combined to obtain the broader set of results 
discussed here (SPSS and PLS-Graph), or require extensive programming to be fully utilized in 
variance-based SEM (MATLAB). The results were essentially the same across different tools, 
suggesting consistency in the underlying algorithms employed. 

8. The Distorting Effect Of Lateral Collinearity 
The model with the main results is shown on Figure 4. The beta coefficients are standardized 
partial regression coefficients, and reflect the strength of the associations between pairs of linked 
latent variables. Beta coefficients noted with a “*” are significant at the P < .001 level; this includes 
all beta coefficients but one, the beta between ECMV and Effic, which was not statistically 
significant (P=.129). Nearly all beta coefficients are significant at the P < .001 level because of both 
the strength of the relationships and the relatively large sample size (N=290). R-squared 
coefficients are shown under criteria (a.k.a. endogenous) latent variables; they reflect the 
percentage of explained variance for those variables. 
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Electronic 
communication 
media variety 

(ECMV)

Team success in 
terms of sales 

(Ssucce)

Team project 
management 

(Prjmgt)

Team efficiency 
(Effic)

Team success in 
terms of return on 

investment
(Rsucce)

R2=.049

(β=.222)*

(β=.471)*

(β=-.069)

(β=.509)* (β=.905)*

R2=.212 R2=.259 R2=.818

 
Note: * P < .001. 

Figure 4. Model with Main Results 
 
The results suggest that Prjmgt mediates the relationship between ECMV and Effic. The results also 
suggest that ECMV has a trivial effect on Effic, when the effect of Prjmgt is controlled for. Combined, 
these results are consistent with the general notion that electronic communication technologies often 
do not affect performance directly, but rather require some form of complex adaptive use to mediate 
their effect on performance (Briggs, De Vreede, & Nunamaker, 2003; Burke, Aytes, & Chidambaram, 
2001; Dennis, Hayes, & Daniels, 1999; DeSanctis & Poole, 1994; Easley, Devaraj, & Crant, 2003; 
Fjermestad & Hiltz, 1998; Kahai & Cooper, 2003; Markus, 2005). 
 
Note the particularly high beta coefficient between SSucce and RSucce (beta=.905), suggesting a 
strong and positive association. The resulting R-squared for RSucce is a high .818, suggesting that 
81.8 percent of the variance in RSucce is explained by one single latent variable, namely SSucce. As 
it will be seen later, these high beta and R-squared coefficients are due to lateral collinearity, and the 
apparently strong causal association between SSucce and RSucce is a “mirage”. Nevertheless, the 
measurement instrument and related dataset pass standard validity, reliability, and vertical collinearity 
tests. This is demonstrated in the next several paragraphs. 
 
Table 1 (next page) shows indicator loadings, cross-loadings, and reliability measures. The 
loadings and cross-loadings are from a pattern matrix, obtained from a structure matrix by oblique 
rotation and without any normalization (Hair et al., 2009; Maruyama, 1998; Miller & Wichern, 1977). 
Loadings must be equal to or greater than .5 for convergent validity to be considered acceptable 
(Hair et al., 2009; Kline, 1998), which is the case here, meaning that there seems to be good 
agreement between the questionnaire designer and the respondents regarding the sets of 
indicators that “belong” to each latent variable. 
 
For reliability to be considered acceptable, both the composite reliability (CR) and the Cronbach alpha 
(CA) coefficients should be equal to or greater than .7 (Fornell, & Larcker, 1981; Nunnaly, 1978), 
indicating good agreement among respondents regarding the meaning of each set of indicators 
belonging to a particular latent variable. This is also the case here, as the CRs and CAs are all above 
.805. In fact, the criterion that both CR and CA should be equal to or greater than .7 is a rather 
conservative criterion, not followed by all researchers. Many use only CR as a basis for this test, 
since CR is the only coefficient of reliability of the two that takes indicator loadings into consideration. 
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Table 1. Indicator Loadings, Cross-Loadings and Reliability Measures 

 ECMV PMngt Effic SSucce RSucce CR CA 

ECMV (1.000) 0.000 0.000 0.000 0.000 1.000 1.000 

Prjmgt      0.885 0.805 

 Prjmgt1 -0.001 (0.817) 0.053 0.296 -0.331   

 Prjmgt2 -0.040 (0.891) -0.085 -0.034 0.170   

 Prjmgt3 0.044 (0.836) 0.038 -0.269 0.159   

Effic      0.925 0.897 

 Effic1 -0.005 -0.006 (0.909) -0.158 0.141   

 Effic2 -0.064 0.053 (0.928) -0.372 0.247   

 Effic3 0.005 0.061 (0.807) -0.167 0.142   

 Effic4 0.079 -0.146 (0.888) 0.483 -0.502   

 Effic5 -0.009 0.034 (0.670) 0.269 -0.067   

SSucce      0.964 0.949 

 SSucce1 -0.042 0.030 -0.028 (1.051) -0.094   

 SSucce2 0.031 -0.021 -0.041 (0.800) 0.193   

 SSucce3 0.005 -0.017 0.109 (1.132) -0.347   

 SSucce4 0.006 0.006 -0.029 (0.771) 0.214   

RSucce      0.955 0.928 

 RSucce1 0.037 -0.037 -0.020 -0.078 (1.045)   

 RSucce2 0.033 0.018 -0.097 -0.183 (1.164)   

 RSucce3 -0.074 0.020 0.123 0.275 (0.581)   
Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team efficiency; SSucce: 
Team success in terms of sales; RSucce: Team success in terms of return on investment. Loadings shown within parentheses; 
CR: composite reliability coefficient; CA: Cronbach alpha coefficient. Loadings and cross-loadings are after an oblique rotation, 
and without normalization. 

 
Even though we can conclude that the measurement instrument and related dataset present good 
convergent validity and reliability, note that some of the loadings for indicators belonging to the latent 
variables SSucce and RSucce are greater than 1. In pattern matrices that have not been normalized, 
this is not necessarily an indication of data abnormalities, even though it is sometimes associated 
with abnormalities (Hair et al., 2009). Examples of possible abnormalities that could cause this are 
linear dependence among variables, rank problems, outliers due to measurement error, highly 
nonlinear relationships being modeled as linear, and collinearity. Normalization would mask this, as it 
would ensure that all loadings are capped at 1 (Ehremberg & Goodhart, 1976; Miller & Wichern, 
1977; Thompson, 2004). Still, one cannot say with certainty that there is a problem with the dataset, 
let alone that collinearity is the source of the possible problem. The “odd” loadings are nothing but a 
“red flag” at this point. Additional factor analysis results, illustrating other related red flags, are 
discussed in Appendix E. 
 
Even if there were convergent validity and/or reliability problems, the question as to whether 
there were collinearity problems would remain open. Conceptually, collinearity is a different 
problem from those related to poor convergent validity or reliability (Hair et al., 2009; Kline, 
1998). These problems are all somewhat related, but they are not the same. This caveat adds to 
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the one, pointed out before, that collinearity is not the same as correlation (Echambadi & Hess, 
2007; Hamilton, 1987). Two variables may be highly correlated but not collinear, even though two 
variables that are collinear will usually be highly correlated (see Appendix B for an extended 
discussion of correlation versus collinearity). 
 
Table 2 shows correlations among latent variables and square-roots of the average variances 
extracted (AVEs) for each latent variable. The square-roots of the AVEs are shown on the diagonal 
and within parentheses. These coefficients are used to test the discriminant validity of the 
measurement instrument and related dataset, which is essentially the degree of agreement between 
questionnaire designer and respondents regarding the mismatch between sets of indicators 
“belonging” to certain latent variables and other, unrelated, latent variables. Or, in simpler terms, 
discriminant validity is the degree of agreement between questionnaire designer and respondents 
regarding indicators that do and do not “belong” to certain latent variables. 
 
Table 2. Latent Variable Correlations and Square-Roots of AVEs 

 ECMV Prjmgt Effic SSucce RSucce 

ECMV (1.000) 0.222 0.035 0.125 0.111 

PMngt 0.222 (0.848) 0.456 0.353 0.313 

Effic 0.035 0.456 (0.843) 0.509 0.516 

SSucce 0.125 0.353 0.509 (0.933) 0.905 

RSucce 0.111 0.313 0.516 0.905 (0.936) 
Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team efficiency; SSucce: 
Team success in terms of sales; RSucce: Team success in terms of return on investment. AVE: average variance extracted. 
Square-roots of AVEs shown on diagonal within parentheses. 

 
A measurement instrument and related dataset are considered to have acceptable discriminant 
validity if the square-roots of the AVEs for each latent variable are higher than any of the correlations 
between that latent variable and other latent variables (Fornell & Larcker, 1981). This can be 
ascertained by comparing the numbers on the diagonal with the numbers above and below them, 
within each column. The numbers on the diagonal should always be higher, which is the case here, 
suggesting acceptable discriminant validity. Note that the square-root of the AVE for RSucce (.936) is 
not much higher than the high correlation between SSucce and RSucce (.905). Even though this is 
not enough for discriminant validity to be questioned, it is another red flag strongly indicative of 
collinearity because it refers to a very simple block with only one predictor pointing at the criterion 
latent variable (see Appendix B). 
 
Table 3 shows the VIFs used in a vertical, or “classic”, collinearity test. As noted before, vertical 
collinearity in SEM refers to collinearity among latent variable predictors in blocks where two or more 
predictors point at one criterion (or endogenous latent variable). In the model that served as the basis 
for this illustrative analysis, this happens only on the left part of the model, where both ECMV and 
Prjmgt point at Effic. VIFs lower than 3.3 suggest no vertical collinearity, which is the case here. 
 
Table 3. Vertical Collinearity Estimates 

 ECMV Prjmgt 

Effic 1.052 1.052 
Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team efficiency. Since only 
vertical, or “classic”, collinearity is assessed here, the VIFs shown are for the single block where two latent variable predictors 
point at a latent variable criterion in the model. VIFs lower than 3.3 suggest no collinearity. 
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The tests above are reasonably comprehensive in their scope. They check for validity, reliability, and 
vertical collinearity problems. They find no clear problems. A few red flags exist – e.g., high latent 
variable correlations (in comparison with AVEs), and pattern matrix loadings greater than 1. However, 
these red flags do not tell us with certainly that problems exist, according to widely used data 
validation tests, nor the types of problems that may exist. Moreover, lateral collinearity may exist even 
without these red flags, and lateral collinearity can lead to misleading conclusions by suggesting the 
existence of associations that do not actually exist in the real world. 

9. Identifying Lateral Collinearity: A Full Collinearity Test 
There are two main ways in which lateral collinearity can be identified. The first relies on the creation of 
multiple “dummy” blocks of latent variables, where predictor-criteria pairs point at dummy latent 
variables. The latter become the new criteria variables in the dummy blocks. As noted before, VIFs are 
not influenced in any way by the values of the criterion variable in a block. Therefore, the dummy 
variables can assume any values, including random values. That is, the VIFs for each predictor-criteria 
pair in a dummy block will be the same regardless of the values that the dummy variable stores. 
 
The second main way in which lateral collinearity can be identified is to perform what is referred to here 
as a “full” collinearity test. This can be done by creating a block where all latent variables in the model 
are included as predictors pointing at one single criterion, a dummy variable. (See Appendix F for a 
discussion of how this can be implemented in practice.) This is a more comprehensive and conservative 
test of collinearity, since it allows for the identification of collinearity among all the variables in the model, 
regardless of where they are located in the model. Different latent variables refer to different constructs, 
whether they are in the same block on not in a SEM model. This renders this second approach 
particularly appealing, and, thus, it is the one we employ. Table 4 shows the results. 
 
Table 4. Full Collinearity Estimates 

ECMV Prjmgt Effic SSucce RSucce 

1.067 1.366 1.593 5.700 5.668 
Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team efficiency; SSucce: 
Team success in terms of sales; RSucce: Team success in terms of return on investment. The VIFs shown are for all of the 
latent variables; a “dummy” latent variable criterion was used. VIFs equal to or greater than 3.3 suggest collinearity. 

 
In a full collinearity test, VIFs equal to or greater than 3.3 suggest the existence of collinearity in the 
context of variance-based SEM. They frequently appear in pairs, as is the case here for SSucce and 
RSucce. Often collinearity in SEM is related to mistakes in questionnaire design or grouping of 
indicators that involve pairs of latent variables (Kline, 1998; Schumacker & Lomax, 2004). It is 
possible that mistakes in questionnaire design or grouping of indicators cause three or more latent 
variables to be collinear, although this may be less likely to occur in practice. 
 
Investigations where indicators are grouped a posteriori based on the results of exploratory factor 
analyses may also be vulnerable in this respect (Ehremberg & Goodhart, 1976; Thompson, 2004). 
The reason is that exploratory factor analyses do not incorporate any semantic knowledge regarding 
indicators and their likely meaning, which is arguably important in their association with the “right” 
latent variables. This is illustrated in Appendix E, where indicators were incorrectly associated, or 
grouped, across two distinct factors (representing distinct candidate latent variables) as a result of an 
exploratory factor analysis where orthogonal rotation was employed. 

10. Eliminating Lateral Collinearity: The New Results 
Upon a careful review of the measurement instrument, it became apparent that the two latent 
variables SSucce and RSucce were included in the analysis by mistake, because the question 
statements associated with those two variables were originally designed to be associated with one 
single latent variable. That is, the designer of the questionnaire had only one construct in mind, but 
the researcher that conducted the data analysis (a different person) saw two possible constructs upon 
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review of the questionnaire. The analyst’s view was supported by reliability, validity, and vertical 
collinearity tests. However, it was not supported by a full collinearity test, which identified lateral 
collinearity, eventually supporting the questionnaire designer’s view. 
 
Given the above, one solution to the collinearity problem would be to combine the two offending latent 
variables, SSucce and RSucce, into one. This new latent variable would be Success, and would refer 
to team success, in general, not success only in terms of sales or return on investment (see Appendix 
D). Figure 5 displays the new model where this solution is implemented; with recalculated beta 
coefficients, respective P values, and R-squared values. 
 

Electronic 
communication 
media variety 

(ECMV)

Team success 
(Success)

Team project 
management 

(Prjmgt)

Team efficiency 
(Effic)

R2=.049

(β=.222)*

(β=.471)*

(β=-.069)

(β=.525)*

R2=.212 R2=.276

 
Note: * P < .001. 

Figure 5. New Model with Main Results 
 

Instead of combining the two offending latent variables into one, an alternative solution would be to 
remove one of the redundant latent variables from the model. However, even if this latent variable 
removal solution were suggested as appropriate after a careful review of the questionnaire and the 
process that led to its design, it could possibly be a less advisable solution, as it would lead to fewer 
indicators being used in the analysis. Generally speaking, the more indicators are used per latent 
variable in a SEM analysis, the greater is the opportunity for minimization of measurement error 
(Fornell & Bookstein, 1982; Kline, 1998; Schumacker & Lomax, 2004). Other solutions exist, such as 
conducting a hierarchical analysis; we discuss this and other solutions later. 
 
The new configuration of latent variables and related indicators leads to new loadings, cross-loadings, 
and reliability coefficients (see Table 5). As in the previous model, the one with lateral collinearity 
problems, these suggest acceptable convergent validity (loadings equal to or greater than .5; Hair et 
al., 2009; Kline, 1998) and reliability (CRs and CAs equal to or greater than .7; Fornell, & Larcker, 
1981; Nunnaly, 1978). It is worth noting that, in contrast to the previous model, no loadings greater 
than 1 are present in the pattern matrix, even though loadings are not normalized. 
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Table 5. Indicator Loadings, Cross-Loadings and Reliability Measures 

 ECUVar Prjmgt Effic Success CR CA 

ECUVari 1.000 0.000 0.000 0.000 1.000 1.000 

Prjmgt     0.885 0.805 

 Prjmgt1 -0.001 (0.836) 0.039 -0.030   

 Prjmgt2 -0.040 (0.884) -0.081 0.130   

 Prjmgt3 0.044 (0.824) 0.047 -0.111   

Effic     0.925 0.897 

 Effic1 -0.006 -0.014 (0.915) -0.019   

 Effic2 -0.065 0.035 (0.941) -0.126   

 Effic3 0.005 0.052 (0.814) -0.026   

 Effic4 0.079 -0.117 (0.867) -0.011   

 Effic5 -0.008 0.043 (0.663) 0.200   

Success     0.972 0.966 

 Success1 -0.041 0.060 -0.050 (0.942)   

 Success2 0.032 -0.007 -0.051 (0.973)   

 Success3 0.006 0.024 0.080 (0.777)   

 Success4 0.007 0.018 -0.038 (0.965)   

 Success5 0.036 -0.075 0.006 (0.935)   

 Success6 0.032 -0.026 -0.066 (0.947)   

 Success7 -0.074 0.007 0.132 (0.832)   

Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team efficiency; 
Success: Team success. Loadings shown within parentheses; CR: composite reliability coefficient; CA: Cronbach 
alpha coefficient. Loadings and cross-loadings are after an oblique rotation, and without normalization. 
 
Table 6 shows the new latent variable correlations and square-roots of AVEs. Like in the previous 
model with lateral collinearity problems, the figures on the table suggest acceptable discriminant 
validity (the square-roots of the AVEs for each latent variable are higher than any of the correlations 
between that latent variable and other latent variables; Fornell & Larcker, 1981). In contrast to the 
previous model, there is no instance in which a square-root of AVE for a latent variable is almost the 
same as a correlation between that latent variable and another latent variable. 
 
Table 6. Latent Variable Correlations and Square-Roots of AVEs 

 ECMV Prjmgt Effic Success 

ECMV (1.000) 0.222 0.035 0.122 

PMngt 0.222 (0.848) 0.456 0.344 

Effic 0.035 0.456 (0.843) 0.525 

Success 0.122 0.344 0.525 (0.912) 

Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team 
efficiency; Success: Team success. Square-roots of AVEs shown on diagonal within parentheses. 
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If we were to use the same vertical collinearity test employed in the previous model, the results would be 
the same. This is because the only block where two or more predictors point at a criterion is the same. 
Instead, Table 7 shows the VIFs generated from a full collinearity test, which captures any possible vertical 
or lateral collinearity problems. No collinearity exists in the new model (VIFs are lower than 3.3). 
 
Table 7. Full Collinearity Estimates 

ECMV Prjmgt Effic Success 

1.067 1.351 1.585 1.420 
Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team efficiency; Success: 
Team success. The VIFs shown are for all of the latent variables; a “dummy” latent variable criterion was used. VIFs lower than 
3.3 suggest no collinearity. 

 
In summary, lateral collinearity problems cannot normally be identified based on standard validity, 
reliability, or vertical collinearity tests. Still, lateral collinearity can lead to misleading conclusions. 
Strong predictor-criterion effects in SEM and other statistical analysis tests may appear to exist, being 
essentially a mirage caused by lateral collinearity. These can be particularly problematic in 
multivariate analyses, even though they may also occur in bivariate (a.k.a. univariate) analyses. 
 
Based on this, it is strongly recommended that full collinearity tests be conducted in future empirical 
research, together with validity and reliability tests. Full collinearity tests capture both vertical and 
lateral collinearity problems. This recommendation applies not only to the field of information systems, 
but to all fields that employ multivariate data analysis methods. Moreover, a full collinearity test may 
be seen as a variance-based SEM equivalent to a test frequently used in covariance-based SEM 
known as common method bias test (Lindell & Whitney, 2001), and be used also to rule out that type 
of bias based on the same criterion for absence of collinearity. 

11. Discussion and Recommendations 
This section provides a broad discussion of possible causes and signs of collinearity, as well as 
recommendations on ways to deal with collinearity. For completeness, it addresses collinearity, in 
general; lateral as well as vertical collinearity. Emphasis is placed on variance-based SEM, even 
though at least part of the discussion applies to other multivariate analysis methods. 

11.1. Causes of Collinearity 
One of the most extensive discussions of general causes of collinearity is the one laid out by 
Mosteller & Tukey (1977) in their seminal book on data analysis and regression. However, it refers 
only to vertical collinearity and mostly in the context of manifest variables, as opposed to latent 
variables. Hair at al. (2009) provide a more succinct list of possible causes of vertical collinearity 
based on an extensive survey of the literature, again with an emphasis on manifest variables. 
 
The focus of this paper is on latent variables in variance-based SEM analyses. Within this sphere of 
application, and taking various related developments in the literature on collinearity into consideration 
(Echambadi & Hess, 2007; Graham, 2003; Hair at al., 2009; Mosteller & Tukey, 1977; Sengupta & 
Bhimasankaram, 1997), it seems that two fundamental and generic reasons for collinearity are 
construct mismatch and redundant latent variables. 

11.1.1. Construct Mismatch 
The definition of construct used here is that of a mental representation of an attribute of an object 
(Audi, 2003; Popper, 1992). A researcher designing a questionnaire may have certain mental 
representations of object attributes, such as satisfaction with and intention to use a particular 
technology, while the respondents of the questionnaire may have different mental representations of 
those object attributes. For example, a researcher may view two constructs as separate, whereas the 
respondents may provide answers to a questionnaire suggesting that they view those two constructs 
as being part of the same broader construct. Construct mismatch may also occur among different 
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members of a research team, such as a questionnaire designer and a data analyst. A different but 
related construct mismatch situation would be one in which the researcher sees two or more 
constructs as separate, whereas the respondents see the constructs as instances of a higher order 
construct (Wetzels, Odekerken-Schroder, & van Oppen, 2009). 

11.1.2. Redundant Latent Variables 
Two variables are said to be redundant if they measure the same construct in situations where there 
is no construct mismatch – for example, the researcher and the respondents are in agreement, even 
if unknowingly, regarding their mental representations of the object attributes addressed through the 
research. In variance-based SEM, redundancy is often desirable only among indicators of the same 
latent variable, if the variable is measured reflectively as opposed to formatively (Gefen et al., 2000; 
Petter et al., 2007). Redundancy among latent variables is a possible cause of collinearity in 
variance-based SEM, and may result from treating multiple measures of the same construct as if they 
were measures of different constructs. Let us assume that a researcher decided to study the effect 
that perceived and actual wealth had on the choice of personal mobile technology used. The 
researcher included two latent variables in an SEM model, treating them as distinct variables: 
perceived wealth, measured through 5 indicators; and actual wealth, measured as a composite of 3 
objective measures of wealth (e.g., net worth). If perceived wealth were a very good proxy for actual 
wealth, then the two latent variables would be redundant and, thus, add collinearity to the model. If 
the two variables were included in a predictor-criterion block, actual wealth as predictor and perceived 
wealth as criterion, this would lead to lateral collinearity. 

11.2. Signs of Collinearity 
The main signs of collinearity in variance-based SEM are the following: high R-squared coefficients, 
high correlations among latent variables, loadings greater than 1 after a non-normalized oblique 
rotation in a confirmatory factor analysis, unrotated cross-loadings greater than .5 in a confirmatory 
factor analysis, unexpected groupings of indicators after an orthogonal rotation in an exploratory 
factor analysis, and path coefficients greater than 1 or lower than -1. 

11.2.1. High R-Squared Coefficients 
As discussed earlier, the VIF for a criterion latent variable in a latent variable block (a.k.a. an 
endogenous latent variable) is a function of the variance explained by the predictor latent variables. 
The VIF threshold of 3.3 is reached for an R-squared of .697, or .835 to the power of 2 (see Appendix 
B). Therefore, an R-squared of .697 or greater is a sign of lateral collinearity in the context of 
variance-based SEM. It is not a guarantee of lateral collinearity though, because path coefficients 
(i.e., betas) for links between predictors and criteria may be inflated due to vertical collinearity 
(Mueller, 1996), leading to inflated R-squared values. In the illustrative example, the R-squared for 
the criterion among the two collinear latent variables was .818 (greater than .697) and, thus, 
suggestive of lateral collinearity. 

11.2.2. High Correlations Among Latent Variables  
Correlation is a necessary but insufficient condition for collinearity to exist. Moreover, the relationship 
between correlation and collinearity is nonlinear. Nevertheless, in very simple variance-based SEM 
model blocks, with only two laterally connected latent variables, a correlation of .835 will most likely be 
associated with collinearity (see Appendix B). This was exemplified in the illustrative example, where 
the correlation between two latent variables in one such simple model was found to be .905. For more 
complex models, however, much lower correlation values may be associated with collinearity. 

11.2.3. Loadings Greater Than 1 (oblique-rotated CFA)  
Confirmatory factor analysis is usually an integral part of variance-based SEM, whereby loadings and 
cross-loadings are generated and subsequently used in data validation tests. After a non-normalized 
oblique rotation of loadings and cross-loadings, the existence of loadings greater than 1 is an indication 
of possible collinearity (Hair et al., 2009). The illustrative analysis exemplified this; in it, loadings greater 
than 1 were associated with some of the indicators of the two collinear latent variables. 
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11.2.4. Cross-Loadings Greater Than .5 (Unrotated CFA)  
Usually one of the outputs of a confirmatory factor analysis is an unrotated table of loadings and 
cross-loadings, often referred to as a “structure matrix”. In the context of variance-based SEM, the 
loadings and cross-loadings in this table are bivariate correlations among indicators and latent 
variable scores. The threshold for an indicator to be considered as “belonging” to a latent variable is 
.5, and is applied to loadings in convergent validity assessment (Hair et al., 2009; Kline, 1998). Cross-
loadings greater than .5 are signs of possible collinearity, as they reflect high correlations among a 
latent variable score and indicators that are not supposed to “belong” with that latent variable. This 
was shown in the illustrative example (more specifically, in Appendix E), where cross-loadings greater 
than .7 were associated with the two collinear latent variables. 

11.2.5. Unexpected Groupings Of Indicators (Orthogonally Rotated EFA) 
Orthogonal rotation of loadings and cross-loadings in confirmatory factor analysis is less frequently 
recommended than oblique rotation when latent variables are expected to be correlated (Ferguson, 
1981; Thompson, 2004), which is the default expectation in variance-based SEM. Thus, tables with 
orthogonally rotated loadings and cross-loadings are not normally available as outputs in variance-
based SEM software. However, an exploratory factor analysis may be conducted with generic 
statistical analysis software (e.g., SPSS). In an exploratory factor analysis employing an orthogonal 
rotation algorithm, unexpected groupings of indicators are indicative of possible collinearity. This 
occurred in the illustrative analysis (see Appendix E). 

11.2.6. Path Coefficients Greater Than 1 or Lower Than -1 
Path coefficients in variance-based SEM are standardized partial regression coefficients, of the same 
type as the standardized coefficients of association calculated though multiple regression analyses. 
They may become greater than 1 or lower than minus 1, typically due to vertical collinearity (Miller & 
Wichern, 1977). Given that PLS regression minimizes collinearity among latent variables, path 
coefficients greater than 1 or lower than minus 1 should not be common in variance-based SEM 
models. When they occur, one should expect to uncover the existence of vertical collinearity. 

11.3. Dealing with Collinearity 
It is recommended that full collinearity tests, as demonstrated in the illustrative example, be included 
as part of routine data validation tests in future information systems research employing variance-
based SEM. Not only would this reduce the likelihood of collinearity-related problems, but also add 
rigor to variance-based SEM research by including the equivalent to a data validation test commonly 
employed in covariance-based SEM known as a common method bias test (Lindell & Whitney, 2001), 
which is not normally employed in variance-based SEM. This recommendation regarding full 
collinearity tests applies to disciplines other than information systems as well. 
 
Moreover, it is recommended that datasets used in past variance-based SEM research where the 
above signs of collinearity are present be formally tested for collinearity, employing a full collinearity 
test as demonstrated in the illustrative example (see also Appendix F). If the existence of collinearity 
is confirmed, models should be revised, additional analyses conducted on the same dataset, and 
conclusions revisited. Four main approaches may be employed in this respect: indicator removal, 
indicator re-assignment, latent variable removal, latent variable aggregation, and hierarchical 
analysis. These are discussed below, in terms of collinearity between pairs of latent variables, but the 
discussion also applies to collinearity among three or more latent variables. 

11.3.1. Indicator Removal 
Collinearity between a pair of latent variables may be associated with a few offending indicators that 
are highly correlated with both latent variable scores. This would typically be seen in reflective latent 
variables, and would be indicated by high unrotated loadings and cross-loadings for those indicators 
from a confirmation factor analysis. In this case, a possible solution would simply be the removal of 
the offending indicators from the model. 
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11.3.2. Indicator Re-assignment 
Collinearity between a pair of latent variables may also be associated with a few offending indicators 
that are poorly correlated with the latent variable they were assigned to and highly correlated with the 
other latent variable. This may happen with reflective and formative latent variables. The offending 
indicators would be reflected through low loadings and high cross-loadings in both oblique-rotated 
and unrotated tables. In this case, a possible solution would be to re-assign the offending indicators. 

11.3.3. Latent Variable Removal 
It is possible that collinearity between a pair of latent variables is due to all of the indicators of one or 
the other, or of both variables, being highly correlated with both latent variable scores. This would 
typically happen with reflective latent variable measurement. Situations in which latent variables are 
measured through a small number of indicators, including one single indicator, are the most likely to 
characterize this scenario. A possible solution is to remove one of the latent variables from the model. 

11.3.4. Latent Variable Aggregation 
There is another possible solution to the above situation, where collinearity between a pair of 
reflective latent variables is due to all of the indicators of one or the other, or of both variables, 
being highly correlated with both latent variable scores. The solution is to aggregate all of the 
indicators of the collinear latent variables into one latent variable. The end result would be a model 
with fewer latent variables, as with the latent variable removal solution, but with more indicators 
being used in its measurement. 

11.3.5. Hierarchical Analysis 
When formative latent variables are used, in some cases collinearity between a pair of latent 
variables may be associated with indicators that are poorly correlated with the latent variable they 
were assigned to and highly correlated with the other latent variable. In this case, a possible solution 
is to conduct a hierarchical analysis in two steps. The first would entail exploratory and confirmatory 
factor analyses involving only the formative latent variable, where the latent variable would be 
decomposed into two or more latent variables. In the second step, the latent variable scores obtained 
in the first step would be used as indicators of another latent variable, called a second-order latent 
variable, in the original model. This would likely reduce the collinearity in the original model. For very 
complex formative latent variables, this process could be extrapolated to multiple levels, leading to 
third-order, fourth-order, and so on latent variables being generated. 
 
Model revision and additional analyses can lead to radically different conclusions, with important 
implications for research and practice. In some cases they may lead to significant revisions in 
theoretical models. It would take courage for researchers to engage in this process and admit to prior 
mistakes, such as having argued that strong causal relationships existed when those relationships 
were, in fact, artificial products of lateral collinearity. Still, that seems to be a better alternative than 
having those mistakes convincingly pointed out by others. 

11.4. Additional Considerations 
One might argue that the example with lateral collinearity in this paper was not properly supported 
by theory. While this may be true, the fragmentation of empirical research and theoretical models in 
the field of information systems (as well as in other fields where multivariate analyses are 
employed) makes it relatively easy to support the development of almost any set of hypotheses. 
Novel but wrong hypotheses may survive the review process due to being perceived as “fresh” 
and/or “interesting” by open-minded reviewers. Lateral collinearity, if not identified, may elevate 
those wrong hypotheses to the status of a “counterintuitive” and “groundbreaking” new theory, 
leading to even more fragmentation. 
 
It could also be argued that lateral collinearity should be avoided by attacking the problem at its 
source: namely, the design of measurement instruments. Indeed, if a questionnaire is poorly 
designed, the techniques discussed here may not be enough to salvage the resulting dataset; they 
will only uncover problems. However, even a properly designed measurement instrument may lead to 
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collinearity. This can happen if the respondents have an understanding of the meaning of certain 
question-statements that is different from that intended by the designer of the measurement 
instrument. In fact, collinearity may be caused by subtle differences in understanding, whose 
distorting effects could be greatly amplified through multivariate analyses. For example, the designer 
may have a slightly more sophisticated view of the difference between two or more constructs than 
the respondents, which may, in turn, give rise to severe collinearity. 
 
Finally, one could argue that validity and reliability tests are enough to identify collinearity, as 
suggested by the red flags that emerged in the illustrative analysis. It is possible that red flags, such 
as oblique-rotated loadings higher than 1, will emerge through standard validity and reliability tests. 
But there are many problems associated with using them to identify collinearity. As demonstrated in 
the illustrative analysis, those red flags may not point clearly at collinearity as the underlying problem. 
Also, they may be masked by other commonly used statistical techniques, such as normalization 
(combined with rotation) of loadings and cross-loadings, and not even show up in tests. Finally, those 
red flags, while visible to researchers experienced in multivariate data analyses, do not violate criteria 
widely used in validity and reliability tests. 

12. Conclusion 
Vertical collinearity is a classic type of collinearity in that it is traditionally assessed in multiple 
regression analyses (Echambadi & Hess, 2007; Hair et al., 2009). We argue that there is another type 
of collinearity that is almost never assessed: namely, lateral collinearity. An example analysis is used 
to illustrate lateral collinearity, the problems that it creates, and related methodological solutions. 
 
One key implication that stems from the discussion presented here is that information systems 
researchers, as well as researchers in several other fields, should conduct full collinearity tests in 
addition to validity and reliability tests in variance-based SEM analyses. Full collinearity tests are also 
indicated in multivariate analyses that do not employ latent variables, such as path and multiple 
regression analyses. It is clear that collinearity may severely distort results, while not being easy to 
identify through validity and reliability tests. 
 
Given that, researchers may have to revisit previous analyses, and revise their findings if hidden 
collinearity existed but was not explicitly recognized. It is strongly recommended that analyses 
suggesting strong predictor-criterion associations be considered for full collinearity tests, as these are 
the types of associations that can normally be distorted by lateral collinearity. 
 
The identification of strong predictor-criterion associations that do not exist is particularly 
problematic for practitioners. Those associations are often reported as supporting strong causation, 
which may lead practitioners to prioritize their business decisions in a misguided way. For example, 
let us assume that a predictor variable P is found to strongly influence a criterion C, where C refers 
to return on investment. But this is due to collinearity between P and C; something that is unknown 
to a researcher, who infers strong causation from this result. Based on the reported finding that P 
strongly influences C, a manager may feel compelled to maximize P in order to maximize C, at the 
expense of other possible predictors. This may lead to costly and mistaken organizational 
decisions, even as P and C grow together. The reason why P and C grow together is that they are 
essentially the same thing. 
 
In the detailed illustrative analysis discussed earlier, one initial conclusion (due to collinearity) was 
that team success in terms of sales seemed to strongly influence team success in terms of return on 
investment. The underlying hypothesized relationship was based on the reasonable assumption that 
a product first has to sell well to generate a good return on investment (Kerzner, 2005; Reich & Wee, 
2006). This highlights the possibility that good theory may lead to distorted results in the absence of 
appropriate lateral collinearity assessment. 
 
Misleading findings due to lateral collinearity can be either difficult to implement by business 
practitioners, or lead to misguided business implementation decisions. Revised findings after removal 
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of lateral collinearity may in the least provide a more focused basis on which practitioners can make 
decisions. In the illustrative analysis, after lateral collinearity was revealed, it appears that the foci of 
practitioners using the analysis to guide them should be on increasing the electronic communication 
media variety available to teams, while at the same time encouraging the use of project management 
techniques, which should, in turn, increase team efficiency and eventually team success. 
 
Even though information systems is a relatively new field, it appears to have become a reference field 
for a variety of other fields (Baskerville & Myers, 2002; Grover et al., 2006), within and outside business. 
There are two main reasons for that. Not only is the field of information systems multidisciplinary, but 
information systems researchers are themselves multidisciplinary. In order to effectively do research, 
information systems researchers often have to combine knowledge from various fields. Examples of 
such fields are statistics, organizational behavior, computer science, and psychology. This places 
information systems researchers in a position where they can contribute to those fields as well; e.g., by 
developing both new statistical analysis techniques and the software tools that automate them, which 
may be used by organizational behavior and psychology researchers. 
 
The stage is then set for information systems researchers to make methodological contributions that 
are relevant for the field of information systems and many other fields. A good example is the 
leadership role played by information systems researchers in the development of ideas, techniques, 
and software tools for variance-based SEM (Chin, 1998; Chin et al., 2003). Those are now 
increasingly used within and outside the field of information systems. The discussion presented here 
aims at making an interdisciplinary contribution that is very relevant for the field of information 
systems, and that is also arguably very relevant to many other fields. As such, the discussion present 
here is likely to contribute to strengthening information systems’ position as a reference field. 
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Appendices 

Appendix A: Glossary 
Correlation 
Correlation is fundamentally defined as a bivariate (a.k.a. univariate) phenomenon. Two variables are 
said to be correlated if they vary in concert. Correlation values may vary from -1 to 1. The presence of 
correlation is a necessary but insufficient condition to characterize collinearity. 

Collinearity 
Collinearity is fundamentally a multivariate phenomenon, unlike correlation, which is fundamentally a 
bivariate phenomenon. Two or more variables are said to be collinear if they measure the same 
attribute of a tangible or intangible object. The term “multicollinearity” is often used as synonymous 
with collinearity. 

Construct 
A construct is defined as a mental representation of an attribute of an object. For example, the object 
may be a technology, and the attribute may be ease of use. As such, there can be no construct 
without a mind, and the nature of a construct may vary across different individuals (and, thus, different 
minds). For example, a researcher designing a questionnaire may have one mental representation of 
an object’s attribute, such as ease of use of a particular information technology, but the respondents 
of the questionnaire may have a different mental representation of that object’s attribute. 

Covariance-Based SEM 
Covariance-based SEM is the classic form of SEM, with many years of development and maturation. 
It relies on parametric assumptions about the data for the estimation of chance probabilities (typically 
in the form of P values), including the assumption of multivariate normality. 

Factor 
A factor is an aggregation of manifest variables; the term “latent variable” is often used as 
synonymous with factor. Through factors, a dataset with multiple variables can be reduced to a more 
manageable set, and measurement error can be minimized. 

Factor Analysis 
Factor analysis is a procedure through which variables in a dataset are reduced to factors, which are 
essentially aggregations of sets of original variables; the latter are often called indicators. Factor 
analysis can be exploratory, whereby factors are extracted from the dataset, or confirmatory, whereby 
factor-indicator relationships are specified beforehand and tested based on coefficients of association 
(e.g., loadings). 

Formative Latent Variable 
In a formative latent variable the indicators refer to different facets of the same attribute of a tangible 
or intangible object, as opposed to being reflections of the same attribute. Generally speaking, 
indicators of a formative latent variable are expected to be significantly associated with the latent 
variable score, but are not expected to be redundant. 

Indicator 
Indicators are manifest variables that are aggregated to form latent variables. In variance-based 
SEM, latent variable scores are calculated by aggregating indicators based on their weights. A weight 
is the standardized partial regression coefficient between the indicator and the latent variable score, 
and the latent variable score is calculated as the exact linear combination of its indicators based on 
their respective weights. 

Latent Variable 
A latent variable is a variable that is not measured directly. A latent variable is measured indirectly 
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through the aggregation of directly measured variables, often referred to as manifest variables or 
indicators. 

Lateral Collinearity 
Lateral collinearity is predictor-criterion collinearity. That is, in graphical depictions of blocks involving 
multiple predictors and one criterion variable, it occurs in a “lateral” way, and is, thus, distinguished 
from vertical collinearity. Lateral collinearity is almost never explicitly tested in multivariate analyses. It 
is not explicitly addressed in widely used textbooks on multivariate analyses either, even though it can 
lead to very misleading conclusions. 

Manifest Variable 
Manifest variables are measured directly, which differentiates them from latent variables. In survey 
research, manifest variables are often measured based on answers to questions on Likert-type 
scales. The questions are meant to refer to similar mental representations held by the researcher 
(usually the designer of the questionnaire) and the respondents and to cluster around latent variables. 

Redundancy 
Redundancy is a property of different variables that measure the same attribute of a tangible or 
intangible object. Typically, variables that are redundant are also collinear; a measure of collinearity 
can be seen as a measure of the degree of redundancy of two or more variables. 

Reflective Latent Variable 
In a reflective latent variable the indicators are reflections of the same attribute of a tangible or 
intangible object, as opposed to being different facets of the same object. Generally speaking, 
indicators of reflective latent variables are expected to be redundant. 

Structural Equation Modeling (SEM) 
SEM can be defined as path analysis with latent variables, whereas each variable in a path model is 
measured through multiple “indicators” (e.g., multiple questions referring to the same construct in a 
questionnaire). 

Variance-Based SEM 
Variance-based SEM is a more recent, sometimes referred to as “soft”, form of SEM. It relies on 
nonparametric, and thus, more flexible, assumptions about the data for the estimation of chance 
probabilities (typically in the form of P values). For example, that estimation does not build on the 
assumption of multivariate normality. 

Variance Inflation Factor (VIF) 
The VIF is a multivariate measure that is a function of the variance explained on a variable by a set of 
variables, usually in the same model. Typically, a VIF is calculated for each of the predictors of a 
block of variables involving multiple predictors and one criterion. 

Vertical Collinearity 
Vertical collinearity is a “classic” type of collinearity in that it is traditionally assessed in multiple 
regression analyses. Multiple regression analyses estimate coefficients of association between 
multiple predictor variables (a.k.a. independent variables) and one criterion variable (a.k.a. dependent 
variable). In this context, vertical collinearity refers to predictor-predictor collinearity. 
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Appendix B: Correlation Versus Collinearity 
As discussed earlier, the degree of collinearity of a latent variable 1LV  among a set of variables  1LV , 

2LV , …
nLV  is usually measured through the VIF for that latent variable. The VIF is itself is a function 

of the R coefficient for the latent variable, which is the square root of the variance explained in 1LV  by 
the variables  2LV , 

3LV …
nLV . 

 
This applies to any number of variables, and also to latent variables measured through only one indicator; 
the latter would not, technically speaking, be “true” latent variables. If only two variables are present, one 
predictor and one criterion, R would essentially be the correlation between the two variables. 
 
Figure B-1 shows the relationship between VIF and R when only two variables are present. As it can 
be seen, the relationship is nonlinear. The curve is based on the equation relating VIF and R 
presented earlier – Equation (1). The values for VIF remain somewhat low and stable for values of R 
between 0 and .8, going up steeply afterwards. (Negative values of R would lead to the same curve, 
as VIF is a function of R squared.) 
 

 
Figure B-1. The Relationship Between VIF and R for Two Variables 

 
Table B-1 shows the values of VIF and R when only two variables are present. The lowest possible 
value for the VIF is 1, which occurs when R is 0. Let us assume that we were to set the threshold of 
VIF for collinearity at 3.3. In this case, a correlation of .835 or higher would suggest collinearity in a 
situation involving only two variables. Any block in an SEM model with only two variables, one 
predictor and one criterion, would characterize this correlation-collinearity coexistence situation. 
 
Table B-1. The Values of VIF and R for Two Variables 

VIF 1.00 1.25 1.50 1.75 2.00 2.50 3.30 5.00 10.00 

R 0.000 0.447 0.577 0.655 0.707 0.775 0.835 0.894 0.949 
 
When more than two variables are involved, the analysis becomes much more complex, because now 
the R is a function of multiple variables, and essentially of multiple correlation values (Hair et al., 2009). 
 
Let us consider a theoretical case in which two predictor variables point at a criterion variable, and the 
predictor variables are uncorrelated. In this case, the value of R for the criterion variable will be a 
function of two other correlation values, R1 and R2, which are the correlations between each of the 
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predictor variables and the criterion. The value of VIF, which is itself a function of R, will consequently 
be a function of R1 and R2. 
 
The values of VIF for the scenario above are plotted on Figure B-2, generated based on a simulation 
with MATLAB. Three dimensions are needed because three variables are involved. As it can be seen, 
the variable VIF can reach unacceptably high values, clearly suggestive of collinearity, for much lower 
values of R1 and R2 than in the case when only two variables are present. 
 

 
Figure B-2. The Relationship Between VIF and Rs for Three Variables 
 
The points at which VIF values increase steeply are indicated as peaks (including small peaks) on the 
three-dimensional plot. Here a combination of values of R1 and R2 in the range of .6 to .8 lead to VIF 
values that are suggestive of collinearity for a threshold level of 3.3. For example, if R1 and R2 are 
both equal to .625, the corresponding VIF will be 4.57. 
 
As blocks in an SEM model become more complex from a structural perspective, with more 
predictors pointing at the same criterion, the absolute value of correlations that can lead to significant 
lateral collinearity goes progressively down. 
 
Analogously, as SEM models become more complex from a structural perspective, with more 
variables in them, the absolute value of correlations that can lead to significant full collinearity goes 
progressively down. That is, even if not in the same block, variables may still be redundant and cause 
interpretation problems when correlations are relatively low. 
 
One key implication from this discussion is that not only is collinearity different from correlation, but 
also collinearity cannot be reliably inferred from correlation values alone except for very simple 
models. That is, in most cases, for collinearity to be reliably tested in variance-based SEM, VIF 
values must be calculated and compared against thresholds. Calculating correlations among latent 
variables and comparing those against thresholds is not sufficient to establish collinearity. 
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Appendix C: Measurement Instrument (With Collinearity) 
A Likert-type scale (0 = “Strongly Disagree” to 10 = “Strongly Agree”) was used for each of the 
construct measurement indicators listed below. All constructs were measured reflectively. 

Electronic Communication Media Variety (ECMV) 
This construct was measured by counting the number of tools reported as used “substantially” by 
each team from the following list. Here “substantially” means that the use of the tools was above the 
mid-point of their Likert-type use scales (i.e., above point 5; on a scale from 0 to 10). 
 

ECM1. E-mail to fellow team members (1 to 1). 
ECM2. E-mail to team distribution lists (1 to many). 
ECM3. Team messaging boards or team discussion forums. 
ECM4. Shared electronic files. 
ECM5 Share electronic workspace to facilitate sharing information among team 

members. 
ECM6. Electronic newsletters that covered project information. 
ECM7. Auto routing of documents for team member and management approval. 
ECM8. File transfer protocols (FTP) to attach documents to e-mails and Web pages. 
ECM9. A Web page dedicated to this project. 
ECM10. A Web page for this project that contained project specs, market research 

information, and test results. 
ECM11. Voice messaging. 
ECM12. Teleconferencing. 
ECM13. Video conferencing 
ECM14. Desktop video conferencing 
ECM15. Attaching audio files to electronic documents. 
ECM16. Attaching video files to electronic documents. 

Team Project Management (Prjmgt) 
Prjmgt1. The team followed a clear plan -- a roadmap with measurable milestones. 
Prjmgt2. There were adequate mechanisms to track the project's progress. 
Prjmgt3. There were adequate mechanisms to track the project's costs. 

Team Efficiency (Effic) 
Effic1. The product was launched within or under the original budget. 
Effic2. The product came in at or below cost estimate for development. 
Effic3. The product came in at or below cost estimate for production. 
Effic4. The product was launched on or ahead of the original schedule developed at 

initial project go-ahead. 
Effic5. Top management was pleased with the time it took us from specs to full 

commercialization. 

Team Success in Terms Of Sales (SSucce) 
The product: 

SSucce1.  Met or exceeded volume expectations. 
SSucce2.  Met or exceeded sales dollar expectations. 
SSucce3. Met or exceeded the 1st year number expected to be produced and 

commercialized. 
SSucce4.  Overall, met or exceeded sales expectations. 

Team Success in Terms of Return On Investment (RSucce) 
The product: 

RSucce1. Met or exceeded profit expectations. 
RSucce2. Met or exceeded return on investment (ROI) expectations. 
RSucce3. Met or exceeded overall senior management’s expectations. 
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Appendix D: Measurement Instrument (Without Collinearity) 
Same as above, but with the two team success constructs, namely “Team success in terms of sales” 
and “Team success in terms of return on investment” merged into one construct: “Team success”. 

Team Success (Success) 
The product: 

Success1. Met or exceeded volume expectations. 
Success2. Met or exceeded sales dollar expectations. 
Success3. Met or exceeded the 1st year number expected to be produced and 

commercialized. 
Success4. Overall, met or exceeded sales expectations. 
Success5. Met or exceeded profit expectations. 
Success6. Met or exceeded return on investment (ROI) expectations. 
Success7. Met or exceeded overall senior management’s expectations. 
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Appendix E: Additional Factor Analysis Results 
Below are additional results from the analysis. ECMV: Electronic communication media variety; 
Prjmgt: Team project management; Effic: Team efficiency; SSucce: Team success in terms of sales; 
RSucce: Team success in terms of return on investment. 
 
Table E-1 shows the unrotated loadings and cross-loadings from a confirmatory factor analysis 
(CFA). These loadings and cross-loadings are essentially the bivariate correlations between the 
indicators and latent variable scores. As mentioned before, loadings must be equal to or greater 
than .5 for convergent validity to be considered acceptable (Hair et al., 2009; Kline, 1998), which is 
the case here. 
 
Table E-1. Unrotated Indicator Loadings and Cross-Loadings (CFA) 

 ECMV PMngt Effic SSucce RSucce 

ECMV (1.000) 0.125 0.035 0.222 0.111 

Prjmgt 

  Prjmgt1 0.185 (0.844) 0.402 0.295 0.238 

  Prjmgt2 0.178 (0.885) 0.395 0.383 0.358 

  Prjmgt3 0.202 (0.814) 0.362 0.215 0.193 

Effic 

  Effic1 0.028 0.394 (0.896) 0.441 0.456 

  Effic2 -0.026 0.402 (0.884) 0.359 0.388 

  Effic3 0.045 0.406 (0.821) 0.411 0.422 

  Effic4 0.061 0.306 (0.813) 0.412 0.379 

  Effic5 0.045 0.413 (0.796) 0.533 0.538 

SSucce 

  SSucce1 0.093 0.347 0.471 (0.953) 0.848 

  SSucce2 0.141 0.312 0.461 (0.955) 0.883 

  SSucce3 0.107 0.325 0.492 (0.862) 0.746 

  SSucce4 0.126 0.333 0.478 (0.957) 0.891 

RSucce 

  RSucce1 0.126 0.264 0.465 0.855 (0.950) 

  RSucce2 0.133 0.282 0.423 0.836 (0.951) 

  RSucce3 0.049 0.334 0.565 0.849 (0.904) 

Note that many of the cross-loadings for SSucce and RSucce are greater than .5 as well; in fact, 
several are greater than .7. This is not necessarily an indication of collinearity, as the cross-loadings 
are expected to be high given the fact that they are unrotated and that there is a strong correlation 
between SSucce and RSucce. Nevertheless, these high cross-loadings can be seen also as red 
flags, much like the loadings greater than 1 present in the oblique-rotated loadings and cross-
loadings table shown earlier. 

Table E-2 shows the orthogonally rotated indicator and cross-loadings table, from an exploratory 
factor analysis (EFA), whereby 5 factors were extracted. In this case the loadings and cross-loadings 
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were obtained after an orthogonal varimax rotation with Kaiser normalization. Note that the loadings 
for SSucce and RSucce were grouped together under factor 1, correctly. This would not be expected 
by a researcher who considered the associated indicators as belonging to different latent variables. 
Moreover, Effic was split across factors 2 and 4, which would also be unexpected, and arguably 
incorrect given the wording of the question statements. This unexpected grouping of indicators across 
extracted factors could be seen as a red flag as well. 
 
Table E-2. Orthogonally Rotated Indicator Loadings and Cross-Loadings (EFA) 

 1 2 3 4 5 

ECMV 0.081 -0.032 0.147 0.020 (0.980) 

Prjmgt 

  Prjmgt1 0.117 0.093 (0.812) 0.255 0.042 

  Prjmgt2 0.252 0.126 (0.841) 0.084 0.025 

  Prjmgt3 0.063 0.280 (0.776) -0.053 0.130 

Effic 

  Effic1 0.259 (0.792) 0.165 0.331 -0.008 

  Effic2 0.176 (0.879) 0.189 0.220 -0.056 

  Effic3 0.246 (0.825) 0.202 0.131 0.020 

  Effic4 0.206 0.412 0.089 (0.801) 0.055 

  Effic5 0.368 0.305 0.220 (0.767) -0.025 

SSucce 

  SSucce1 (0.895) 0.094 0.169 0.190 -0.019 

  SSucce2 (0.921) 0.096 0.116 0.170 0.058 

  SSucce3 (0.779) 0.239 0.138 0.109 0.036 

  SSucce4 (0.920) 0.126 0.137 0.154 0.034 

RSucce 

  RSucce1 (0.899) 0.208 0.050 0.052 0.068 

  RSucce2 (0.896) 0.156 0.083 0.034 0.067 

  RSucce3 (0.832) 0.209 0.137 0.256 -0.061 

Note: Loadings and cross-loadings are after an orthogonal varimax rotation with Kaiser normalization. 

Orthogonal rotation of loadings and cross-loadings is generally less frequently recommended than 
oblique rotation when latent variables are expected to be correlated (Ferguson, 1981; Thompson, 
2004). This is the default expectation in variance-based SEM. Thus, tables with orthogonally rotated 
loadings and cross-loadings are not normally available as outputs in variance-based SEM software, 
but can be generated with generic statistical software tools (e.g., SPSS). 

Factor analysis in the context of variance-based SEM is typically confirmatory and conducted in the 
context of SEM models with various hypothesized causal links. Causal links between latent variables 
are hypothesized and tested in variance-based SEM via the calculation of coefficients of association. 
If there were no correlations between latent variables, the coefficients of association would all be 
zero, and no hypotheses would be supported. 
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Appendix F: Conducting a Full Collinearity Test with 
WarpPLS 2.0 

The following steps can be used to conduct a full collinearity test with WarpPLS 2.0. (Version 3.0 
of WarpPLS, which had not yet been released at the time of this writing, is expected to fully 
automate this test.)  
 
First, add a new column to the original dataset, with random values. (This can be done with almost 
any spreadsheet software. With Excel, the “RAND” function is recommended.) Any range of random 
values may be employed; for example, random values varying from 0 to 1. This new column is 
essentially a new random “dummy” variable. 
 
Second, create a model where all of the latent variables point at the new random dummy variable 
(see Figure F-1), which should be defined as a latent variable with a single indicator. This indicator 
refers to the column in the original dataset storing random values for the dummy variable. 
 

ECMVECMV SSucceSSuccePrjmgtPrjmgt EfficEffic RSucceRSucce

Random “dummy”
variable

Random “dummy”
variable

 
Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team efficiency; SSucce: 
Team success in terms of sales; RSucce: Team success in terms of return on investment. 

Figure F-1. Full Collinearity Test With WarpPLS 2.0 
 
Third, run a SEM analysis using the “PLS Regression” algorithm. Forth, inspect the table with the 
VIFs, provided by the software under the menu option “View and save results”. There should be one 
VIF value for each of the latent variables. 
 
If any VIF is equal to or greater than 3.3, then it can be concluded that collinearity is present in the 
model. Normally collinearity appears in pairs, suggesting that the two latent variables in question are 
actually measuring the same construct. In this case, a possible solution could be to combine the two 
latent variables into one, as in the illustrative example. 
 
An alternative approach to identify the collinear latent variables that should be combined is to inspect 
the table with latent variable correlations, also provided by the software under the menu option “View 
and save results”. If two or more latent variables show VIFs that are equal to or greater than 3.3, and 
are significantly correlated, then they could be combined into one single latent variable. This 
alternative approach may be particularly useful when more than two latent variables show VIFs equal 
to or greater than 3.3. In this case, it may be difficult to identify the latent variables that are collinear 
with each other based on the inspection of the VIFs table alone. 
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Appendix G: Moderating Effects and Collinearity 
Three moderating effects were added to the model without collinearity in the illustrative example, 
where the model includes all latent variables configured in such a way as to allow for a full collinearity 
test. These moderating effects are represented through dashed arrows in Figure G-1. 
 

ECMV SuccessPrjmgt Effic

Random “dummy” 
variable

 
Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team efficiency; Success: 
Team success. 

Figure G-1. Moderating Effects Added to Explore Collinearity Inflation 
 
The full collinearity estimates are show on Table G-1. VIF values are shown for the original latent 
variables, as well as for the interaction latent variables. The latter are noted as latent variable 
products; for example, Success*Effic, in which case the moderating variable is Success, and the 
latent variable link being moderated is that between Effic and the dummy variable. 
 
Table G-1. Full Collinearity Estimates 

ECMV Success Effic Prjmgt Success*Effic Effic*Prjmgt Prjmgt*ECMV 

1.076 1.434 1.762 1.478 1.297 1.279 1.008 
Notes: ECMV: Electronic communication media variety; Prjmgt: Team project management; Effic: Team efficiency; Success: 
Team success.  
Terms with a “*” symbol refer to moderating effects, where the variable listed before the “*” is the moderating variable. The VIFs 
shown are for all of the latent variables, including interaction variables; a “dummy” latent variable criterion was used. VIFs 
lower than 3.3 suggest no collinearity. 
 
As it can be inferred from this table, the addition of moderating effects had little impact on the VIF 
values, with all of them eventually being lower than 2. The original VIF values, without the moderating 
effects, were also all lower than 2: ECMV=1.067; Success=1.420; Effic=1.585; and Prjmgt=1.351. As 
expected, all of them increased due to the inclusion of moderating effects (Echambadi & Hess, 2007), 
but only slightly. This rather limited increase in VIF values is likely due to the PLS regression 
algorithm, which tends to minimize collinearity among latent variables. 
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