WarpPLS
User Manual:

Version 8.0

\ T T T T v y
<
<
) y O y ¢ >
0 < L'e ] > L] 2
L+
F . -
]
o o >
@« X <o
1 | I ' A L

Ned Kock



WarpPLS User Manual: Version 8.0

WarpPLS® User Manual:
Version 8.0

December 2024

Ned Kock

S ScriptWarp Systems ™
= Laredo, Texas
USA




WarpPLS User Manual: Version 8.0

WarpPLS User Manual: Versions 1.0 — 7.0, January 2009 — September 2023, Version 8.0,
October 2023 — December 2024, Copyright © by Ned Kock

All rights reserved worldwide. No part of this publication may be reproduced or utilized in any
form, or by any means — electronic, mechanical, magnetic or otherwise — without permission in
writing from ScriptWarp Systems.

Software use agreement

The use of the software that is the subject of this manual (Sofware) requires a valid license,
which has a limited duration (usually no more than one year). Individual and organizational
licenses may be purchased from ScriptWarp Systems, or any authorized ScriptWarp Systems
reseller.

The Software is provided “as is”, and without any warranty of any kind. Free trial versions of the
Software are made available by ScriptWarp Systems with the goal of allowing users to assess,
for a limited time (usually one to three months), the usefulness of the Software for their data
modeling and analysis purposes. Users are strongly advised to take advantage of those free trial
versions, and ensure that the Software meets their needs before purchasing a license.

Free trial versions of the Software are full implementations of the software, minus the licenses.
That is, they are not demo versions. Nevertheless, they are provided for assessment purposes
only, and not for “production” purposes, such as to analyze data and subsequently publish it as a
consulting or research report. Users must purchase licenses of the Software before they use it for
“production” purposes.

Multivariate statistical analysis software systems are inherently complex, sometimes yielding
results that are biased and disconnected with the reality of the phenomena being modeled. Users
are strongly cautioned against accepting the results provided by the Software without double-
checking those results against: past empirical results obtained by other means and/or with other
software, applicable theoretical models, and practical commonsense assumptions.

Under no circumstances is ScriptWarp Systems to be held liable for any damages caused by the
use of the Software. ScriptWarp Systems does not guarantee in any way that the Software will
meet the needs of its users.

For more information:

ScriptWarp Systems
P.O. Box 452428
Laredo, Texas, 78045
USA
WWW.Scriptwarp.com
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A. Introduction

Structural equation modeling (SEM) employing the partial least squares (PLS) method, or
PLS-based SEM for short, has been and continue being extensively used in a wide variety of
fields (Kock, 2010; 2014a; 2015d; 2019a). Examples of fields in which PLS-based SEM has
been used are: cliodynamics (Kock, 2015d), global environmental change (Brewer et al., 2012),
information systems (Guo et al., 2011; Kock & Lynn, 2012; Kock & Moqgbel, 2021; Kock et al.,
2018), international business (Ketkar et al., 2012), marketing (Biong & Ulvnes, 2011; Kock,
2019b), medicine (Berglund et al., 2012; Melton et al., 2016), nursing (Kim et al., 2012),
organizational leadership (Kock et al., 2019), and sustainable tourism (Rasoolimanesh et al.,
2017).

This software provides users with a wide range of features, several of which are not available
from other SEM software. For example, this software is the first and only (at the time of this
writing) to explicitly identify nonlinear functions connecting pairs of latent variables in SEM
models and calculate multivariate coefficients of association accordingly. Functions whose first
and second derivatives are lines are modeled, covering a wide variety of noncyclical and mono-
cyclical functions (Kock, 2010; 2016c).

Additionally, this software is the first and only (at the time of this writing) to provide classic
PLS algorithms together with factor-based PLS algorithms for SEM (Kock, 2017; 2019a), which
can be used in the combination in the same SEM model (Kock, 2024a). Factor-based PLS
algorithms generate estimates of both true composites and factors, fully accounting for
measurement error (Kock, 2015b; 2017; 2019a; 2019b; 2019c). They are equivalent to
covariance-based SEM algorithms; but arguably bring together the “best of both worlds”, by
being statistically efficient (i.e., achieving consistency at modest sample sizes) and generating
latent variable estimates that take measurement error into account.

Factor-based PLS algorithms combine the precision of covariance-based SEM algorithms
under common factor model assumptions with the nonparametric characteristics of classic PLS
algorithms (Kock, 2017; 2019a; 2019b; 2019c). Moreover, factor-based PLS algorithms address
head-on a problem that has been discussed since the 1920s — the factor indeterminacy problem.
Classic PLS algorithms yield composites, as linear combinations of indicators, which can be seen
as factor approximations. Factor-based PLS algorithms, on the other hand, provide estimates of
the true factors, as linear combinations of indicators and measurement errors (Kock, 2015b;
2017).

All of the features provided have been extensively tested with both “real” data, collected in
actual empirical studies; as well as simulated data generated through Monte Carlo procedures,
whereby data is created based on “true” parameter values that the software is expected to
replicate (Kock & Gaskins, 2016; Kock & Mogbel, 2016; Robert & Casella, 2010). Future tests,
however, may reveal new properties of these features, and clarify the nature of existing
properties.
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A.l. Software installation and uninstallation

The software installs automatically from a self-extracting executable file. There are two
components to the software: the MATLAB Compiler Runtime, and the main software (i.e.,
WarpPLS). The first is a set of free-distribution MATLAB libraries with code that is called by
the main software. Because the MATLAB Compiler Runtime is used, you do not have to have
MATLAB (the main MATLAB program) installed on your computer to run WarpPLS.

Minimal and harmless changes to the operating system registry are made by the MATLAB
Compiler Runtime, which are easily reversed upon uninstallation. To uninstall, normally the
following or equivalent steps (depending on the operating system version used) can be taken: go
the “Control Panel”, click on “Add or Remove Programs” or “Programs and Features”, and
uninstall the MATLAB Compiler Runtime.

The MATLAB Compiler Runtime 7.14 is used in this version of WarpPLS. This is the same
MATLAB Compiler Runtime that has been used since version 2.0. The MATLAB Compiler
Runtime used in version 1.0 is a different one, and thus will not work properly with this version
of WarpPLS.

In most cases, previous versions of WarpPLS and of the MATLAB Compiler Runtime
may be retained on a user’s computer. Different versions of WarpPLS and of the MATLAB
Compiler Runtime generally do not interfere with one other.

To uninstall the main software program, normally all you have to do is to simply delete the
main software installation folder. This folder is usually “C:\Program Files\WarpPLS 8.0 or
“C:\Program Files (x86)\WarpPLS 8.0, unless you chose a different folder for the main
software program during the installation process. Then delete the shortcut created by the
software from the desktop.

Both programs, the MATLAB Compiler Runtime and the main software, may be retained
without harm to your computer. They will not normally interfere with other programs; not even
with MATLAB (the main MATLAB program), if you have it installed on your computer.
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A.2. Beta version notice

This version of the software is being released as a beta version. As you will see below, it
incorporates a number of new features, when compared with the previous version. It has
undergone extensive testing. Nevertheless, given the new features, and the inherent
interconnectedness of features, it is possible that this beta version will contain more software
bugs than the corresponding stable version. On the other hand, thanks to the extensive testing
prior to the release of this beta version to users, it is likely that this beta version will soon be
upgraded to the status of stable version.
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A.3. New features in version 8.0

Each new version of the software incorporates features that aim at achieving an important end
goal: to allow users to employ SEM to conduct any of the major statistical tests; from relatively
simple tests such as comparisons of means, to more sophisticated ones such as nonlinear SEM
tests employing logistic regression. Among the community of users of this software, there are
very sophisticated SEM experts that constantly challenge us to implement new data analysis
features, as well as to make the existing features as easy to use as possible. Because of the
constant input from our users, including those who are very knowledgeable about SEM, the
software now arguably provides the most extensive set of features of any SEM software. We
hope to continue in this path as the SEM field evolves. Below we outline new features added to
the current version of the software.

Logistic regression variables. The menu option “Explore logistic regression” now allows you
to create a logistic regression variable as a new indicator that has both unstandardized and
standardized values (Kock, 2023b). Logistic regression is normally used to convert an
endogenous variable on a non-ratio scale (e.g., dichotomous) into a variable reflecting
probabilities. You need to choose the variable to be converted, which should be an endogenous
variable, and its predictors. The new logistic regression variable is meant to be used as a
replacement for the endogenous variable on which it is based. Two algorithms are available:
probit and logit. The former is recommended for dichotomous variables; the latter for non-ratio
variables where the number of different values (a.k.a. “distinct observations”) is greater than 2
but still significantly smaller than the sample size; e.g., 10 different values over a sample size of
100. The unstandardized values of a logistic regression variable are probabilities; going from 0 to
1. Since a logistic regression variable can be severely collinear with its predictors, you can set a
local full collinearity VIF cap for the logistic regression variable. Predictor-criterion collinearity,
or lateral collinearity (Kock & Lynn, 2012), is rarely assessed or controlled in classic logistic
regression algorithms.

Absolute and relative variation measures. You can now view the number of different values
(a.k.a. “distinct observations”) for all indicators and latent variables, as well as the ratio between
the number of different values and sample size. The first is an absolute and the second a relative
variation measure. These are available under the menu options “View or save correlations and
descriptive statistics for indicators” and “View latent variable coefficients”, respectively. These
measures can help inform decisions about whether to use logistic regression, particularly in
connection with endogenous latent variables. If the number of different values is significantly
smaller than the sample size (e.g., 10 different values over a sample size of 100) for an
endogenous latent variable, that means that a new logistic regression variable could be created
and used as a replacement for the endogenous variable. If several predictors are available, the
new logistic regression variable will incorporate more variation than the endogenous variable on
which it is based, which will typically be reflected in larger coefficients of association (e.g., path
coefficients) when the logistic regression variable is used in the model.

Graphs for full latent growth coefficients. You can now view several graphs for each of the
full latent growth coefficients (Kock, 2020a) provided under the menu option “Explore full latent
growth”. Full latent growth coefficients have a number of applications, such as: moderating
effects analyses, nonlinearity tests, multi-group and measurement invariance tests, and the
assessment of moderated mediation effects (Cox, 2024; Kock, 2021c). Each of the graphs is
made up of several plots, which refer to changes in the coefficients selected (e.g., path
coefficients) for the relationship between the variables shown in the X and Y axes, as the latent
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growth variable goes from low to high. The following graph menu options are available: “Full
sample splits (megaphones)”, “Partial sub-samples splits (megaphones)”, “Full sample splits
(bars)”, “Partial sub-samples splits (bars)”, “Full sample splits (lines)”, and “Partial sub-samples
splits (lines)”.

HTMT2 ratios. The sub-option “'Discriminant validity coefficients (extended set)”, under the
menu option “Explore additional coefficients and indices”, now allows you to inspect the newest
version of the set of heterotrait-monotrait (HTMT) ratios calculated by the software. These have
been dubbed HTMT?2 ratios. The HTMT and HTMT?2 ratios have been proposed for discriminant
validity assessment, particularly in the context of composite-based SEM via classic PLS
algorithms; as opposed to factor-based SEM via modern algorithms that estimate factors (which
have been available from this software for quite some time now). Discriminant validity is a
measure of the quality of a measurement instrument; the instrument itself is typically a set of
question-statements. A measurement instrument has good discriminant validity if the question-
statements (or other measures) associated with each latent variable are not confused by the
respondents, in terms of their meaning, with the question-statements associated with other latent
variables.

Incremental interface improvement. This is conducted in each new version of the software.
At several points the code has been modified so that the user interface experiences are improved.
This has led in several cases to what appears to be a smoother flow through the several steps and
procedures guided by the user interface. Several elements of the graphical user interface, such as
screens and warning messages, have been optimized so that users can perform SEM analysis
tasks with only a few clicks — and in a straightforward fashion. Nevertheless, care is always
taken to ensure that the user interfaces do not change too much, otherwise users would have to
re-learn how to use the interface whenever a new version is released.

Incremental code optimization. This is also conducted in each new version of the software.
At several points the code has been optimized for speed, stability, and coefficient estimation
precision. In some cases, the optimization has led to lesser propagation of sampling error,
making the software reach accurate results at lower sample sizes — that is, increasing the
statistical efficiency of the software. These incremental code optimization changes have led to
incremental gains in speed even as new features have been added. More often than not, new
features require additional computational steps and often complex calculations, mostly to
generate internal checks and coefficients that were not available before.

10
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A.4. Note regarding features

The vast majority of the features implemented by the software have been extensively vetted
by a variety of researchers, many of whom have published studies employing the software in
highly selective publication outlets. Having said that, it should be also noted that some of the
features provided by the software are still at an early stage of utilization by the research
community, and may change in the future as more tests are conducted.

Other novel features of this software may prove useful for applications different from the ones
they were originally intended for. For example, an extensive set of causality assessment
coefficients is provided by the software (Kock, 2022b). Yet, the topic of causality assessment
in the context of SEM is controversial (Kock, 2015e; Kock & Gaskins, 2016; Pearl, 2009). A
causality assessment coefficient that is provided to inform the user of the possibility of a reverse
link may prove in the future to be useful to identify a specific type of bias due to measurement
error.

Finally, while this software aims at providing a wide range of features and outputs, the
complexity inherent in SEM analyses and their dependence on theory that is constantly being
refined would tend to make strong and sweeping claims regarding accuracy and statistical power
likely to be proven exaggerated.

Researchers analyzing empirical data typically do not know the underlying distributions of
their data and of error terms. Data analysis software tools help researchers uncover
characteristics of those distributions, with incomplete information. Given this, it seems
reasonable to conclude that all SEM algorithms and software tools that implement these
algorithms have limitations in their accuracy, avoidance of false positives, and statistical power
(i.e., avoidance of false negatives).

Accuracy and statistical power seem to suffer particularly when very small samples and
deviations from normality are observed in the context of small effect sizes (Kock & Hadaya,
2018). Some exaggerated claims about PLS-based SEM’s performance under these conditions
have opened a door for criticism that would otherwise have been tightly closed. For example,
Goodhue et al.’s (2012) extensive analysis of various SEM algorithms illustrates related
limitations, although its negative results may have been exacerbated by the fairly low path
coefficients that they used for small and medium effect sizes. Those path coefficients were based
on effect sizes that were calculated using the stepwise regression procedure proposed by Cohen
(1988) for the calculation of f-squared coefficients, which is generally not compatible with PLS-
based SEM algorithms (Kock, 2014a). This theme is further explored later in this user manual.

This software attempts to ameliorate this situation in connection with accuracy and statistical
power by providing an extensive set of features and outputs that can be used by researchers to
reveal as many aspects of the underlying relationships as possible.

Some of the features provided are specifically aimed at increasing accuracy and statistical
power. For example, jackknifing, one of the resampling methods provided, tends to generate
relatively low standard errors, more in line with the true values, with small samples and medium
to high effect sizes. This could increase statistical power with small samples and medium to high
effect sizes, making the use of jackknifing more appropriate than bootstrapping in these cases.
The same may be true for the “stable” methods, particularly the “Stable3” method (Kock,
2018b). In fact, Monte Carlo simulations suggest that the “stable” methods perform better than
jackknifing and other resampling methods in this respect (Kock, 2018b).

This software’s extensive range of features may also help further research on SEM methods in
general.
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B. The main window

Prior to displaying the software’s main window, a command prompt window may be shown
and kept open for the duration of the SEM analysis session. Whether this window is shown
or not depends on the operating system being used and its settings. If it is not shown, that is not a
problem.

However, do not try to close this command prompt window if it is shown, because it will list
warnings and error messages that will likely be very useful in troubleshooting. Moreover, those
warnings and error messages will indicate where in the source code they are happening, which
will help the software developer correct any possible problems in future versions of the software.

In very slow computers, with limited computing power, only the command prompt window
may be displayed for as long as a few minutes. The reason for this is that the computer needs to
load a large runtime module prior to actually running this software. Users should not try to do
anything during this time, as that will only delay the launch of the software’s main window.

12
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B.1. The SEM analysis steps

The software’s main window (see Figure B.1) is where the SEM analysis starts. The top-left
part of the main window contains a brief description of the five steps through which the SEM
analysis takes place. The steps are executed by pressing each of the push buttons on the top-right
part of the window. Not all menu options and push buttons become available right away. Menu
options and push buttons become available as the analysis progresses.

Figure B.1. The main window showing the steps (after a complete analysis was conducted)

Project Data Modify Explore Settings Help

Welcome to WarpPLS 8.0, a software developed by Ned Kock using MATLAB, C++
and Java. ‘

Proceed to Step 1 :‘ Proceed to Step 4
This software will help you conduct a structural equation modeling (SEM)
analysis using various composite-based and factor-based methods, including the
"warped" partial least squares (PLS) method. The analysis will be conducted
through the following steps: Proceed to Step 2 Proceed to Step 5
Step 1: Open or create a project file to save your work.
Step 2: Read the raw data used in the SEM analysis.
Step 3: Pre-process the data for the SEM analysis.
Step 4: Define the variables and links in the SEM model. Proceed to Step 3 View/save analysis results

Step 5: Perform the SEM analysis and view the results.

Press a "Proceed to Step ..." button when you are ready to continue. (Unavailable
steps are grayed out; they will be made available as you progress through the
steps.)

For more help, click on the "Help" menu option at the top of this window.

Status of SEM analysis steps (* = completed)

*Step 1: Openlcreate project file

Project file: Kock_05_ECollabModStudy.prj

Path: C:\Ned\NedSwDeVIMATLAB\WarpPLS\09_WarpPLS_v_8_0_De..\
*Step 2: Read raw data

Raw data file: DataSimulation.xIsx

Path: C:\Ned\NedWriting\Journals\_UnderReview\lJeC_Using...\

*Step 3: Pre-process data

*Step 4: Define variables/links in SEM medel

*Step 5: Perform/view SEM analysis/results

The steps must be carried out in the proper sequence. For example, Step 5, which is to perform
the SEM analysis and view the results, cannot be carried out before Step 1 takes place, which is
to open or create a project file to save your work. This is the main reason why steps have their
push buttons grayed out and deactivated until it is time for the corresponding steps to be carried
out.

The bottom-left part of the main window shows the status of the SEM analysis; after each step
in the SEM analysis is completed, this status window is updated. A miniature version of the SEM
model graph is shown at the bottom-right part of the main window. This miniature version is
displayed without results after Step 4 is completed. After Step 5 is completed, this miniature
version is displayed with results.

The following menu options are available under “Project”: “Open or create project (Step 1),
“Save project”, “Save project as ...”, and “Exit”. The “Open or create project (Step 1)” option
allows users to open or create a project file, providing an alternative path for executing Step 1.
Through the “Save project” option you can save the project file that has just been created or that
has been created before and is currently open. To open an existing project or create a new project
you need to execute Step 1, by pressing the “Proceed to Step 17 push button. The “Save project
as ...” option allows you to save an existing project with a different name and in a different
folder from ones for the project that is currently open or has just been created. This option is
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useful in the SEM analysis of multiple models where each model is a small variation of the
previous one. Finally, the “Exit” option ends the software session. If your project has not been
saved, and you choose the “Exit” option, the software will ask you if you want to save your
project before exiting. In some cases, you will not want to save your project before exiting,
which is why a project is not automatically saved after each step is completed. For example, you
may want to open an existing project, change a few things and then run a SEM analysis, and then
discard that project. You can do this by simply not saving the project before exiting.

Initially, before Step 5 is completed, the menu option “Explore” becomes available from the
main window with limited functionality available under it; it only allows users to explore
statistical power and minimum sample size requirements. Extra functionality under “Explore”
becomes available after Step 5 is completed. After Step 3 is completed, whereby the data used in
the SEM analysis is pre-processed, three sets of menu options become available from the main
window: “Data”, “Modify”, and “Settings”.

The “Data” menu options refer primarily to data viewing and saving tasks. These menu
options allow you to view or save data and various statistics, mostly descriptive statistics, into
tab-delimited .txt files. The “tab-delimited .txt file” is the general file format used by the
software to save most of the files containing analysis and summarization results. These files can
be opened and edited using Excel, Notepad, and other similar spreadsheet or text editing
software. These menu options are discussed in more detail later.

The “Modify” menu options refer primarily to data modification tasks. These menu options
allow you to add new data labels and raw data to your dataset, redo missing data imputation, as
well as add one or more latent variable scores (a.k.a. factor scores) to the dataset as new
standardized indicators. Also available is the option of adding all latent variable scores at once to
the dataset as new standardized indicators. Data labels can be shown on graphs as text next to
data points, or as legends for data points using different markers. These menu options are
discussed in more detail later.

The “Explore” menu options give you access to a variety of advanced ancillary analysis
features. These allow you to estimate statistical power and minimum sample size requirements
(Kock, 2023c), view T ratios and confidence intervals for various coefficients, estimate complex
probabilities via conditional probabilistic queries, conduct full latent growth analyses (Hubona &
Belkhamza, 2021; Kock, 2020a), conduct multi-group and measurement invariance analyses,
create analytic composites (Kock, 2021a; Kock et al., 2018) and instrumental variables that can
be used to address endogeneity (Kock, 2022a) and analyze reciprocal relationships (Kock,
2023a), perform numeric-to-categorical and categorical-to-numeric conversions, view Dijkstra's
consistent PLS outputs, create logistic regression variables (Kock, 2023b), view fit indices
comparing indicator correlation matrices (shown together with other classic model fit and quality
indices), and view new reliability measures generated in the context of factor-based PLS
analyses. These menu options are discussed in more detail later.

The “Settings” menu options refer primarily to the settings used in an SEM analysis. You can
view or change general SEM analysis settings through the “Settings” menu options. Here you
can select the analysis algorithms used in the SEM analysis, the resampling method used to
calculate standard errors and P values, as well as other elements that will define how the SEM
analysis will be conducted. These menu options are discussed in more detail later.

The “Help” menu options give you access to help resources. There are several help menu
options available on the main window, as well as on several other windows displayed by the
software. The “Open User Manual file (PDF)” option opens this document as a PDF file from a
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Web location. The “Open Web page with video for this window” option opens a Web page
with a video clip that is context-specific, in this case specific to the main window. The “Open
Web page with links to various videos™ option is not context-specific, and opens a Web page
with links to various video clips. The “Open Web page with WarpPLS blog™ option opens a
Web page with the WarpPLS blog. Similar help options are available from several other
windows in this software.
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B.2. Data

The “Data” menu options allow you to view or save data and various statistics, mostly
descriptive statistics (see Figure B.2). These menu options are discussed individually below.
Some of them are discussed in more detail later in this document.

Figure B.2. Data menu options

Data | Modify Settings Help

View or save correlations and descriptive statistics for indicators
View or save P values for indicator correlations

View or save raw indicator data

Wiew or save unstandardized pre-processed indicator data

View or save unstandardized ranked pre-processed indicator data
View or save standardized pre-processed indicator data

Wiew or save standardized ranked pre-processed indicator data
View or save data labels

Save grouped descriptive statistics

View or save latent vanable (a.k.a. factor) scores

The “View or save correlations and descriptive statistics for indicators” option allows you
to view or save general descriptive statistics about the data. These include the following, which
are shown at the bottom of the table that is displayed through this option: numbers of different
values (a.k.a. “distinct observations”), the ratios between the numbers of different values and
sample size, means, standard deviations, minimum and maximum values, medians, modes,
skewness and excess kurtosis coefficients, results of unimodality and normality tests, and
histograms. The unimodality tests for which results are provided are the Rohatgi- Székely test
(Rohatgi & Székely, 1989) and the Klaassen-Mokveld-van Es test (Klaassen et al., 2000). The
normality tests for which results are provided are the classic Jarque-Bera test (Jarque & Bera,
1980; Bera & Jarque, 1981) and Gel & Gastwirth’s (2008) robust modification of this test. Since
these tests are applied to individual indicators, they can be seen as “univariate” or “bivariate”
unimodality and normality tests.

These descriptive statistics are complemented by the option “View or save P values for
indicator correlations”. This option may be useful in the identification of candidate indicators
for latent variables through the anchor variable procedure discussed by Kock & Verville (2012).
This can be done prior to defining the variables and links in a model. This can also be done after
the model is defined and an analysis is conducted, particularly in cases where the results suggest
outer model misspecification. Examples of outer model misspecification are instances in which
indicators are mistakenly included in the model by being assigned to certain latent variables, and
instances in which indicators are assigned to the wrong latent variables (Kock & Lynn, 2012;
Kock & Verville, 2012).

The “View or save raw indicator data” option allows you to view or save the raw data used
in the analysis. This is a useful feature for geographically distributed researchers conducting
collaborative analyses. With it, those researchers do not have to share the raw data as a separate
file, as that data is already part of the project file. That data can be viewed and easily replicated,
if this is needed, through this option.
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Two menu options allow you to view or save unstandardized pre-processed indicator data.
This pre-processed data is not the same as the raw data, as it has already been through the
automated missing value correction procedure in Step 3. The options that allow you to view or
save unstandardized pre-processed indicator data are: “View or save unstandardized pre-
processed indicator data” and “View or save unstandardized ranked pre-processed
indicator data”. The latter option refers to ranked data.

When data is ranked, typically the value distances that typify outliers in data on ratio scales,
whether standardized or unstandardized, are significantly reduced. This effectively eliminates
outliers from the data, without any decrease in sample size. Often some information is lost due to
ranking — e.g., the distances among data points based on answers on ratio scales. Ranked data
can be saved and then selectively read into the project file (e.g., only one or a few columns) and
used in only one or a few latent variables, if it appears that relationships involving those
variables are being significantly and pathologically influenced by the existence of outliers.

Two related menu options allow you to view or save standardized pre-processed indicator
data: “View or save standardized pre-processed indicator data” and “View or save
standardized ranked pre-processed indicator data”. The latter option ranks the data prior to
standardizing it. Ranking often has little effect on ordinal data (e.g., data on Likert-type scales),
and a major impact on ratio data (e.g., yearly income).

The options that refer to unstandardized data allow you to view or save pre-processed data
prior to standardization. The options that refer to standardized data allow you to view or save
pre-processed data after standardization; that is, after all indicators have been transformed in
such a way that they have a mean of zero and a standard deviation of one.

The “View or save data labels” option allows you to view or save data labels. These are text
identifiers that are entered by you separately, through one of the “Modify” menu options. Like
the original numeric dataset, the data labels are stored in a table. Each column of this table refers
to one data label, and each row to the corresponding row of the original numeric dataset. Data
labels can later be shown on graphs, either next to each data point that they refer to, or as part of
a graph’s legend.

The “Save grouped descriptive statistics” option is a special option that allows you to save
descriptive statistics (means and standard deviations) organized by groups defined based on
certain parameters. This option is discussed in more detail at the end of this section. This could
be considered a “legacy” option, which has been useful in the past but whose usefulness
decreased as newer versions of this software have been released. As of this writing, other more
advanced features of the software largely obviate the need for the functionality offered through
this option.

The “View or save latent variable (a.k.a. factor) scores” option allows you to view or save
the latent variable scores generated by the software. There is another option that allows you to
save latent variable scores, available as a menu option on the window used to view and save
model analysis results; which becomes available later, after Step 5 is completed. These two
options return the same latent variable scores in most cases.

The exception to the general rule above is a situation in which you specified a range restriction
for your analysis. In this case, only the latter option will return the range-restricted latent variable
scores. These latent variable scores will generally have a smaller number of rows than the
original dataset (because they are range-restricted), and thus will not be exactly matched to the
original dataset.
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B.2.1. Grouped descriptive statistics

When the “Save grouped descriptive statistics” option is selected, a data entry window is
displayed (see Figure B.2.1.1). There you can choose a grouping variable, number of groups, and
the variables to be grouped. This option is useful if one wants to conduct a comparison of means
analysis using the software, where one variable (the grouping variable) is the predictor, and one
or more variables are the criteria (the variables to be grouped).

Figure B.2.1.1. Save grouped descriptive statistics window

Save Close Help
Grouping variable: No. of groups:
ECUEmail | 2 v
Variables to be Variables in
grouped: data file:
- ECUEmaillist -
sEmail_Elist =
ECUBoard
ECUFiles
ECULotushotes
ECUEnewslet
ECUAutoRout
ECUFTP
il ECUWebPage il
[ Remove ] [ Add ]

Figure B.2.1.2. Grouped descriptive statistics bar chart

A B c D E F G H J K I M
1
2 | Descriptive statistics for grouping variable: ECU1
3
4 Effel
5 |Interval: 0.000 to 5.000 ECU(0-5) 4.676
6 ECU(5-10) 5.903
7
8 Effe1
9 Mean 4.676
1 10|sD 3572
1
12 |Interval: 5.000 to 10.000
Effel
13
14
15 Effe1 ¢
16 /Mean 5.903 6
17 |SD 3.639 5
18
19 4
20 3
21 2
22
23 ki
24 0 T
25 ECU(0-5) ECU(5-10)
26

Figure B.2.1.2 shows the grouped statistics data saved through the window shown in Figure
B.2.1.1. The tab-delimited .txt file was opened with a spreadsheet program, and contained the
data on the left part of the figure.

The data on the left part of Figure B.2.1.2 was organized as shown above the bar chart; next
the bar chart was created using the spreadsheet program’s charting feature. If a simple
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comparison of means analysis using this software (see, e.g., Kock, 2013) had been conducted in
which the grouping variable (in this case, an indicator called “ECU1”) was the predictor, and the
criterion was the indicator called “Effel”, those two variables would have been connected
through a path in a simple path model with only one path. Assuming that the path coefficient was
statistically significant, the bar chart displayed in Figure B.2.1.2, or a similar bar chart, could be
added to a report describing the analysis.

Some may think that it is overkill to conduct a comparison of means analysis using a SEM
software package such as this, but there are advantages in doing so (Kock, 2013). One of those
advantages is that this software calculates P values using a nonparametric class of estimation
techniques, namely resampling and “stable” estimation techniques. (Resampling techniques are
sometimes referred to as bootstrapping techniques, which may lead to confusion since
bootstrapping is also the name of a type of resampling technique.) Nonparametric estimation
techniques do not require the data to be normally distributed, which is a requirement of other
comparison of means techniques (e.g., ANOVA).

Another advantage of conducting a comparison of means analysis using this software is that
the analysis can be significantly more elaborate than with traditional comparison of means
methods, even nonparametric ones. For example, the analysis may include control variables (or
covariates), which would make it equivalent to an ANCOVA test. Finally, the comparison of
means analysis may include latent variables, as either predictors or criteria (see, e.g., Kock,
2024b; Kock & Chatelain-Jardon, 2011). This is not usually possible with ANOVA or
commonly used nonparametric comparison of means tests (e.g., the Mann-Whitney U test). Also,
difference-in-differences analyses can be conducted with this software (Kock, 2024b).

An even more extreme situation is that discussed by Kock (2013) where data on only “one
group and one condition” is available. This situation is illustrated through a scenario in which a
researcher obtains empirical data by asking questions to gauge the effect of a technology on task
performance, but does not obtain data on the extent to which the technology is used. Because of
this, the researcher ends up with only one column of data to analyze.

Two other scenarios are also discussed by Kock (2013). These two scenarios are discussed to
set the stage for the discussion of the “one group and one condition” scenario. The first is a
typical study scenario in which the researcher measures the degree to which the technology is
used, or the degree to which specific features of the technology are used, as well as team
performance and/or related variables expected to be influenced by technology use.

In the second scenario the researcher does not have data on the extent to which the technology
is used, but has data related to team performance and/or other variables expected to be influenced
by technology use before and after the technology is introduced. This is a longitudinal data
collection scenario for which a comparison of means test could be used. Data analyses for all
three scenarios are discussed by Kock (2013) based on this software, showing the versatility of
the software. The main reason for this versatility is that most of the data analysis methods used in
behavioral research can be conceptually seen as special cases of SEM.
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B.3. Modify

The “Modify” menu options allow you to add new data labels and raw data to your dataset,
redo missing data imputation, as well as add one or more latent variable scores (a.k.a. factor
scores) to the dataset as new standardized indicators (see Figure B.3). Also available is the
option of adding all latent variable scores at once to the dataset as new standardized indicators.
Data labels can be shown on graphs as text next to data points, or as legends for data points using
different markers. These menu options are discussed individually below. Some of them are
discussed in more detail later in this document.

Figure B.3. Modify menu options

Add data labels from clipboard

Add data labels from file

Add raw data from clipboard

Add raw data from file

Redo missing data imputation (via data pre-processing)

Add one or more latent variable (a.k.a. factor) scores as new standardized indicators

Add all latent vanable (a.k.a. factor) scores as new standardized indicators

The menu options “Add data labels from clipboard” and “Add data labels from file” allow
you to add data labels into the project file. Data labels are text identifiers that are entered by you
through these options, one column at a time. Like the original numeric dataset, the data labels are
stored in a table. Each column of this table refers to one data label, and each row to the
corresponding row of the original numeric dataset. Data labels can later be shown on graphs,
either next to each data point that they refer to, or as part of the legend for a graph.

Data labels can be read from the clipboard or from a file, but only one column of labels can
be read at a time. Data label cells cannot be empty, contain spaces, or contain only numbers;
they must be combinations of letters, or of letters and numbers. Valid examples are the
following: “Age>17", “Y2001”, “AFR”, and “HighSuccess”. These would normally be entered
without the quotation marks, which are used here only for clarity. Some invalid examples: “123”,
“Age > 17”7, and “Y 2001”.

Through the menu options “Add raw data from clipboard” and “Add raw data from file”
users can add new data from the clipboard or from a file. This data then becomes available for
use in models, without users having to go back to Step 2. These options relieve users from
having to go through nearly all of the steps of a SEM analysis if they find out that they need
more data after they complete Step 5 of the analysis. Past experience supporting users suggests
that this is a common occurrence. These options employ the same data checks and data
correction algorithms as in Step 2; please refer to the section describing that step for more
details.

The option “Redo missing data imputation (via data pre-processing)” allows users to redo
the missing data imputation process after choosing a method through the “View or change
missing data imputation settings” option, which is available under the “Settings” menu
options. The following missing data imputation methods are available: Arithmetic Mean
Imputation (the software’s default), Multiple Regression Imputation, Hierarchical Regression
Imputation, Stochastic Multiple Regression Imputation, and Stochastic Hierarchical Regression
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Imputation. Kock (2014c) and Kock (2018a) provide a detailed discussion of these methods and
of'a Monte Carlo simulation that assesses the methods’ relative performances.

Latent variable scores can be easily added to the dataset via the options “Add one or more
latent variable (a.k.a. factor) scores as new standardized indicators” and “Add all latent
variable (a.k.a. factor) scores as new standardized indicators”. These options allow users,
after Step 5 is completed, to add one or more latent variables to the model as new standardized
indicators, and also to add all latent variables as new indicators. Adding one or more latent
variables at a time may be advisable in certain cases; for example, in hierarchical analyses using
selected latent variables as indicators of second, third etc. order latent variables at each level. In
such cases, adding all latent variables at once may soon clutter the set of indicators available to
be used in the SEM model.
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B.3.1. Data labels

Data labels can be added through the menu options “Add data labels from clipboard” and
“Add data labels from file” (see Figure B.3.1). Data labels are text identifiers that are entered
by you through these options, one column at a time. Like the original numeric dataset, the data
labels are stored in a table. Each column of this table refers to one data label variable, and each
row to the corresponding row of the original numeric dataset. Data labels can later be shown on

graphs, either next to each data point that they refer to, or as part of the legend for a graph. Once
they have been added, data labels can be viewed or saved using the “View or save data labels”

option.

Figure B.3.1. Add data labels from file window

You are about to read data labels.

Data labels can be read from the clipboard or from a file, but only
ONE ceolumn of labels can be read at a time.

Cells cannot be empty, contain spaces, or contain enly numbers;
they must be combinations of letters, or of letters and numbers.

Valid examples: Age>17, Y2001, AFR, HighSuccess. Invalid
examples: 123, Age > 17, Y 2001.

If the source of the labels is a file, its type can be any of the
following:
.xls or xlsx: An Excel file.
Axt: A tab-delimited, or comma-delimited text file.

The file must have the nhames of the labels in the first row, and the
label values associated with those names in the following rows.

The number of label values should be same as the original sample
size.

Press the "Ok" button to continue.

Press the "Go back" button to go back to the main window.

For more help, click on the "Help" menu option at the top of this
window.

Ok

Go back

While data labels can be read from the clipboard or from a file, only one column of labels
can be read at a time. Data label cells cannot be empty, contain spaces, or contain only

numbers; they must be combinations of letters, or of letters and numbers. Valid examples are

the following: “Age>17”, “Y2001”, “AFR”, and “HighSuccess”. These would normally be

entered without the quotation marks, which are used here only for clarity. Some invalid examples

are: “123”, “Age > 177, and “Y 2001”.
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B.4. Explore

The “Explore” menu options allow you to estimate statistical power and minimum sample
size requirements (Kock, 2023c), view T ratios and confidence intervals for various coefficients,
estimate complex probabilities via conditional probabilistic queries, conduct full latent growth
analyses (Hubona & Belkhamza, 2021; Kock, 2020a), conduct multi-group and measurement
invariance analyses, create analytic composites (Kock, 2021a; Kock et al., 2018) and
instrumental variables that can be used to address endogeneity (Kock, 2022a) and analyze
reciprocal relationships (Kock, 2023a), perform numeric-to-categorical and categorical-to-
numeric conversions, view Dijkstra's consistent PLS outputs, view fit indices comparing
indicator correlation matrices (shown together with other classic model fit and quality indices),
and view new reliability measures generated in the context of factor-based PLS analyses. These
menu options are discussed individually below.

Figure B.4. Explore menu options

Explore  Settings  Help

Explore statistical power and minimum sample size requirements
Explore T ratios and confidence intervals

Explore conditional probabilistic queries

Explore full latent growth

Explore multi-group analyses

Explore measurement invariance

Explore analytic composites and instrumental variables

Explore categorical-numeric-categorical conversion

Explore Dijkstra's consistent PLS outputs

Explore logistic regression

Explore additional coefficients and indices

Initially, before Step 5 is completed, the menu option “Explore” becomes available from the
main window with limited functionality available under it. It only allows users to explore
statistical power and minimum sample size requirements, through the menu option “Explore
statistical power and minimum sample size requirements”. Extra functionality under
“Explore”, via the other menu options, becomes available after Step 5 is completed.
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B.4.1. Power and sample size requirements

The menu option “Explore statistical power and minimum sample size requirements”
allows you to obtain estimates of the minimum required sample sizes for empirical studies based
on the following model elements: the minimum absolute significant path coefficient in the model
(e.g., 0.21), the significance level used for hypothesis testing (e.g., 0.05), and the power level
required (e.g., 0.80). Figure B.4.1 illustrates this option. Two methods are used to estimate
minimum required sample sizes, the inverse square root and gamma-exponential methods (Kock,
2023c; Kock & Hadaya, 2018).

Figure B.4.1. Explore statistical power and minimum sample size requirements

Save Close Help

Minimum absolute significant path coefficient in model (range: 0.01 to 0.99)
0.197

Significance level used (range: 0.001 to 0.5)

0.050

Power level required (range: 0.5 to .99)

0.800

Notes: leave cell empty for default value; re-calculation occurs each time any of the values above changes; heuristic rule: sample
sizes cannot be lower than 4; may be slow for very small minimum path coefficients, very high power levels, and very low significance
levels.
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These methods simulate Monte Carlo experiments, and thus produce estimates that are in line
with the estimates that would be produced through the Monte Carlo method. The inverse square
root method tends to slightly overestimate the minimum required sample size, while the gamma-
exponential method provides a more precise estimate. Given this, users are advised to report both
estimates, and try to meet the estimate generated by the more conservative of the two methods
(i.e., the inverse square root method), which will ensure that the power level achieved by their
study will be above the one sought.

Normally researchers have expectations regarding the results that they should obtain from
their empirical studies, expectations that are based on extant theories that they may be
empirically testing, as well as past empirical studies. If that is not the case, those researchers may
find the default values provided by this software to be useful. The minimum required sample size
estimates given by default by this software are 160 and 146.

These estimates are generated based on the inverse square root and gamma-exponential
methods, respectively, based on certain default values for model elements: 0.197 for minimum
absolute significant path coefficient in the model, 0.05 for the significance level used, and 0.80
the power level required. In line with these estimates, the following general rule of thumb is
recommended. Researchers who are uncertain about the results they should expect from their

24



WarpPLS User Manual: Version 8.0

studies should aim for sample sizes of 160 or above, and no less than 146. The rationales for this
general rule of thumb, as well as for the default values underlying it, are discussed in some detail
by Kock & Hadaya (2018).

The simulation work discussed by Kock & Hadaya (2018) has led to a conclusion that often
surprises researchers: the minimum required sample size does not depend on a model’s
complexity, but on the minimum absolute significant path coefficient in the model. While
typically complex models do indeed have weaker path coefficients, a very simple model with
only two connected latent variables and a true path coefficient of .100 will require a sample size
of around 600 for a statistical power level of 80 percent to be achieved.

Note that the focus of this work is on path coefficients because they are usually associated
with hypothesis testing, and thus type I and Il errors — false positives and false negatives,
respectively. Statistical power is the probability that a type Il error will be avoided, for each path
coefficient, which is why the weakest path coefficient is the one that drives the power of a
method used to analyze an entire model with multiple path coefficients.
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B.4.2. T ratios and confidence intervals

While P values are widely used in PLS-based SEM, as well as in SEM in general, the
statistical significances of path coefficients, weights and loadings can also be assessed
employing T ratios and/or confidence intervals (Kock, 2016b). These can be obtained through
the menu option “Explore T ratios and confidence intervals”, which allows you to set the
confidence level to be used (see Figure B.4.2).

Figure B.4.2. Explore T ratios and confidence intervals

Save Close Help

Confidence level used (range: 0.5 to 0.99)

0.950

Notes: leave cell empty for default value; in a test with a T ratio, generally the hypathesis is supported if
directional hypotheses; in a test with a confidence interval, generally the hypothesis is supported if zero |

AEEEEEEEERREEET L

Critical T ratios
For one-tailed tests: 1.645.
For two-tailed tests: 1.960.

T ratios for path coefficients

ECollab Projmagt Success  JSat ECollab*Projmgt
ECallab
Projmgt 6.424
Success 1.222 5.303 5.039 8.189
JSat
ECollab*Projmgt
Confidence intervals for path coefficients
ECollab Projmgt
ECollab
Projmagt 0.244 0.458

Generally speaking, the confidence level used should be the complement of the significance
level used (i.e., 1 minus the significance level used). For example, if the significance level used
is 0.05, then the confidence level used should be set at 0.95 (which is also the software’s
default). Critical T ratios are provided by the software based on the confidence level selected.
The confidence intervals are also affected by the confidence level selected. Kock (2016b)
discusses, with examples, how T ratios and confidence intervals can be used for hypothesis
testing, either in place of P values or in conjunction with those values.
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B.4.3. Conditional probabilistic queries

If an analysis suggests that two variables are causally linked, yielding a path coefficient of
0.25 for example, this essentially means in probabilistic terms that an increase in the predictor
variable leads to an increase in the conditional probability that the criterion variable will be
above a certain value. Yet, conditional probabilities cannot be directly estimated based on path
coefficients; and those probabilities may be of interest to both researchers and practitioners. By
using the “Explore conditional probabilistic queries” menu option, users of this software can
estimate conditional probabilities via queries including combinations of latent variables,
unstandardized indicators, standardized indicators, relational operators (e.g., > and <=), and
logical operators (e.g., & and |). Figure B.4.3 illustrates this option.

Figure B.4.3. Explore conditional probabilistic queries

What is the probability that: * Probabilistic query results *

lv:Success > 1

I The absolute probability that (top expression):

Ww:ECollab =1 & Iv:Projmgt = 1

Select entry type

MNone ~
Select entry

None v

Notes: example - what is the prob. that: lv.perf = 1, if: lv.sat = 1; select entry

* Iv:Success =1
Is:
* 0177 (7.7 percent)

* Iv:ECollab=1 & W:Projmgt = 1
Is:
* 0.093 (9.3 percent)

The absolute probability that (bottom expression):

types and entries to form the probabilistic query expression; you can also edit
the top and bottom probabilistic query expressions directly; group sections of

e iy 1 ) The absolute probability that (top expression):
text within parentheses "()" to build complex queries.

* Iv:Success > 1

And (bottom expression):

* Iv:ECollab > 1 & Iv:Projmgt = 1
Is:

* 0.063 (6.3 percent)

The conditional probability that:

* Iv:Success =1

If:

* Iv:ECollab=1 & W:Projmgt = 1
s:

0.679 (67.9 percent)

Calculate probability

An example of conditional probabilistic query would be the following. What is the probability
that: Iv:Success > 0, if Iv:ECollab > 1? Here the “lv” terms indicate that we are referring to the
latent variables “Success” (level of success in a team project) and “ECollab” (level of use of an
electronic collaboration technology in the project). Since the latent variables are standardized,
this query translates to: What is the probability that a team will have an above average level of
success in a project, if their level of use of the electronic collaboration technology is high?
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B.4.4. Full latent growth

Sometimes the actual inclusion of moderating variables and corresponding links in a model
leads to problems; e.g., increases in collinearity levels, and the emergence of instances of
Simpson’s paradox (Kock, 2015e; Kock & Gaskins, 2016). By using the menu option “Explore
full latent growth” users can completely avoid these problems (see Figure B.4.4). This menu
option allows you to estimate the effects of a latent variable or indicator on all of the links in a
model (all at once), without actually including any links between the variable and other
variables in the model (Kock, 2020a). Moreover, growth in coefficients associated with links
among different latent variables and between a latent variable and its indicators, can be
estimated; allowing for measurement invariance tests applied to loadings and/or weights. Finally,
growth coefficients can be used in the assessment of moderated mediation effects (Hubona &
Belkhamza, 2021; Kock, 2020a; 2021c).

Figure B.4.4. Explore full latent growth

Save Close Help

Latent growth variable type Latent growth variable Degree of growth Coefficients changing
Latent variable W ECollab o First degree N Path coefficients

Notes: select latent growth variable type and name then select the degree of growth to be considered; next select the coefficients whose growth will be assessed; the growth
coefficients refer to changes in the fii lected (e.g., path ffi ts), of the degree selected, with respect to the latent growth variable; click on a latent growth coefficient to
see graph.

Latent growth variable type: Latent variable
Latent growth variable: ECollab

Degree of growth: First degree

Coefficients changing: Path coefficients

Outer model analysis algorithm: PLS Regression

ECollab Projmgt JSat Success ECollab™Proj..
ECollab
Projmgt 0.008
JSat
Success 0.439 0.102 0.212
ECollab*Projmgt

A full latent growth analysis could be seen as a comprehensive analysis of moderating effects
where the moderating variable is “latent”, in the sense that it does not “disrupt” the model in any
way (Hubona & Belkhamza, 2021; Kock, 2020a). This is conceptually analogous to a multi-
group analysis (see, e.g., Kock, 2014a). Nevertheless, full latent growth coefficients have a
number of applications, such as: moderating effects analyses, nonlinearity tests, multi-group and
measurement invariance tests, and the assessment of moderated mediation effects (Kock, 2021c).

Two degrees of latent growth are provided through this menu option: first and second degree
growth. An instance of second degree growth is equivalent to a double moderation, again with
the moderating variable being “latent” (or “hidden” from the other variables in the model). If a
link includes the latent growth variable itself, then the corresponding latent growth coefficient, if
significant, suggests the existence of a nonlinear relationship (which is also equivalent to “self-
moderation”; for a discussion of this equivalence in an action research context see: Kock et al.,
2017). In such an instance (i.e., when the link includes the latent growth variable itself) the level
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of nonlinearity is likely “Warp2” if it is associated with significant first degree growth; and
likely “Warp3” if it is associated with significant second degree growth.

You can view several graphs for each of the full latent growth coefficients (Kock, 2020a) by
simply clicking on a full latent growth coefficient. Each of the graphs is made up of several
plots, which refer to changes in the coefficients selected (e.g., path coefficients) for the
relationship between the variables shown in the X and Y axes, as the latent growth variable goes
from low to high. The following graph menu options are available: “Full sample splits
(megaphones)”, “Partial sub-samples splits (megaphones)”, “Full sample splits (bars)”,
“Partial sub-samples splits (bars)”, “Full sample splits (lines)”, and “Partial sub-samples
splits (lines)”. Each of these six graph types shows multiple plots for low and high values of the
latent growth variable.

The “Full sample splits (megaphones)” and “Partial sub-samples splits (megaphones)”
graphs show plots with full sample and partial sub-sample splits with megaphone line patterns
(to borrow a term from graphical analysis in finance), where best-fitting lines are scaled to start
at zero. The “Full sample splits (bars)” and “Partial sub-samples splits (bars)” graphs show
plots with full sample and partial sub-sample splits with bar charts, where the sizes of the bars
reflect the gradient of the best-fitting lines (i.e., the path coefficients). Finally, the “Full sample
splits (lines)” and “Partial sub-samples splits (lines)” graphs show plots with full sample and
partial sub-sample splits with best-fitting lines (not scaled to start at zero).

Plots employing full sample splits are similar to those provided elsewhere in the software for
2D moderating effects graphs. For example, if a full sample split is indicated as 0.14, the number
of data points to the left is 14 percent of the sample, and to the right it is 86 percent. These refer
to the “low” and “high” values of the full latent growth variable. Plots employing partial sub-
samples splits segment a sub-sample around the split into “low” and “high” values, so they
provide a more localized picture with respect to latent growth effects. These sub-samples are
approximately of the same size, and include points around the split. For example, if a split is
indicated as 0.14, the corresponding plot will be based on 14 percent of the sample to the left of
the split, and 14 percent of the sample to the right of the split. These plots are discussed further at
the end of this user manual, in a sub-section under the section comprising concluding remarks
and further elaborations on additional issues.
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B.4.5. Multi-group analyses

The menu option “Explore multi-group analyses” allows you to conduct analyses where the
data is segmented in various groups, all possible combinations of pairs of groups are generated,
and each pair of groups is compared (see Figure B.4.5). In multi-group analyses normally path
coefficients are compared (Kock, 2014a). The grouping variables can be unstandardized
indicators, standardized indicators, and labels. The sub-options available for group pair
comparison refer to the following methods: constrained latent growth, Satterthwaite, and pooled
standard error.

Figure B.4.5. Explore multi-group analyses

Save Close Help

Grouping variable type Grouping variable Analysis method Minimum N per group
Label v ECollabGroup ~ Constrained latent growth ~ 50

Notes: select grouping variable type and name, then select multi-group analysis method to be used: the grouping variable used must not be part of the model; the minimum
sample size per group (N) must be set as 10 or higher; collinearity and rank problems may occur during the sub-sample analyses, particularly with small sub-samples.

xxxxxxxxxxxxx

Multi-group analysis method: Constrained latent growth
Outer model analysis algorithm: PLS Regression
Default inner model analysis algorithm: Linear

Multiple inner model analysis algorithms used? No
Resampling method: Stable3

Groups analyzed

Ib:ECollabGroup=LowECollab, N=187
Ib:ECollabGroup=HighECollab. N=113

****************

xxxxxxxxxxxxxxxx

***********************************

The constrained latent growth method is essentially the same method as that employed in a
full latent growth analysis (Cox, 2024; Hubona & Belkhamza, 2021; Kock, 2020a), with the
difference that here it is constrained to the sub-sample formed by the two groups being
compared. The Satterthwaite and pooled standard error are classic methods that are widely used
for multi-group analyses (for a detailed discussion of these methods, see: Kock, 2014a). One of
the advantages of the constrained latent growth method is that the sub-sample it analyzes is
larger than the sub-samples analyzed by the Satterthwaite and pooled standard error methods. In
most cases, multi-group analyses can be more easily and comprehensively conducted through a
full latent growth analysis (Hubona & Belkhamza, 2021; Kock, 2020a).
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B.4.6. Measurement invariance

The menu option “Explore measurement invariance” allows you to conduct analyses where
the data is segmented in various groups, all possible combinations of pairs of groups are
generated, and each pair of groups is compared (see Figure B.4.6). These analyses are similar, in
several respects, to those conducted in multi-group analyses. However, while in multi-group
analyses normally path coefficients are compared, in measurement invariance assessment the
foci of comparison are loadings and/or weights (Kock, 2014a).

Figure B.4.6. Explore measurement invariance

Save Close Help

Grouping variable type Grouping variable Analysis method Minimum N per group
Label v ECollabGroup v Constrained latent growth with loadings ~ 50

Notes: select grouping variable type and name, then select multi-group analysis method to be used; the grouping vanable used must not be part of the model; the minimum
sample size per group (N) must be set as 10 or higher; collinearity and rank problems may occur during the sub-sample analyses, particularly with small sub-samples.

Main settings
xxxxxxxxxxxxx

Multi-group analysis method: Constrained latent growth with loadings
Quter model analysis algorithm: PLS Regression

Default inner model analysis algorithm: Linear

Multiple inner model analysis algorithms used? No

Resampling method: Stable3

***************

Ib:ECollabGroup=LowECollab, N=187
Ib:ECollabGroup=HighECollab, N=113

As with multi-group analyses, the grouping variables can be unstandardized indicators,
standardized indicators, and labels. The sub-options available for group pair comparison refer
to the following methods: constrained latent growth, Satterthwaite, and pooled standard error.
The constrained latent growth method is essentially the same method as that employed in a full
latent growth analysis (Hubona & Belkhamza, 2021; Kock, 2020a), with the difference that here
it is constrained to the sub-sample formed by the two groups being compared.

The Satterthwaite and pooled standard error are classic methods that are widely used for
measurement invariance testing (for a detailed discussion of these methods, see: Kock, 2014a).
As noted earlier, one of the advantages of the constrained latent growth method is that the sub-
sample it analyzes is larger than the sub-samples analyzed by the Satterthwaite and pooled
standard error methods. In most cases, measurement invariance assessment can be more easily
and comprehensively conducted through a full latent growth analysis (Hubona & Belkhamza,
2021; Kock, 2020a).
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B.4.7. Analytic composites

The menu option “Explore analytic composites and instrumental variables” allows you to
create analytic composites (see Figure B.4.7). Analytic composites are weighted aggregations
of indicators where the relative weights are set by you, usually based on one or more existing
theories or the definition of the analytic composites. Relative weight values from -1 to 1 are
allowed.

Figure B.4.7. Explore analytic composites

Save Close Help

What to create?
Analytic composite ~

Notes: start by choosing what fo create, analytic composites are aggregations of indicators with set weights, where the weights are defined by the user based on theory and
past research; instrumental variables can be used in many applications, such as confrolling for endogeneity and analyzing reciprocal (nonrecursive) relationships.

Create analytic composite

xxxxxxxxxxxxxxxxxxxxxxxxx

=== Available indicators

Click to choose one or more: JSat1 JSat2 JSat3 ECollab1 ECollab2 ECollab3 Projmgt1 Projmgt2 Projmgt3 Successi
*** Indicators/weights to be used

Indicator (click to remove): JSat1 JSat2 JSat3

Weight (click to change: -1 to +1): 1.000 0.500 -0.500

“** Indicator coeffs.

Std. weight: 0.876 0.438 -0.438

P value: <0.001 <0.001 =0.001

VIF: 1.277 1.339 1.315

WLS: 1 1 -1

ES: 0.775 0.264 0.039

== Correls. with |at. vars_ and reliabs.

Latent variable: ECollab Projmgt Success  JSat ECollab*Prajmgt (CA) (CR)
Correlation/reliability: -0.056 0.076 0.239 0.672 -0.035 0.673 0.573

*** Create analytic composite (click)? Yes

For example, an analytic composite may be defined as the aggregation of 10 stock prices
weighted by values reflecting the relative market capitalization of their respective companies. In
a case like this it makes no sense to let the software assign weights to indicators. The same is true
when a construct is defined within the scope of a theory as being an aggregation of, say, 3
indicators with specific relative weights assigned to them.

Here only relative weights matter, because the actual standardized weights will be calculated
by the software. For instance, in a three-indicator analytic composite, assigning the relative
weights as 1, 0.5 and 0.25 (each weight being the preceding weight divided by 2) has the same
effect as assigning them as 0.3, 0.15 and 0.075.

Analytic composites may also be used to reduce common structural variation in a model
(Kock, 2021a) and in what-if analyses (Kock et al., 2018). In what-if analyses, analytic
composites are designed as replacements for certain latent variables in simulations aimed at
manipulating correlations with other latent variables to better reflect what would happen under
certain conditions — e.g., if professional programmers were considered instead of students in
software development tasks (Kock et al., 2018).
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B.4.8. Instrumental variables: Endogeneity

The menu option “Explore analytic composites and instrumental variables” also allows
you to create instrumental variables (see Figure B.4.8). Instrumental variables are variables
that selectively share variation with other variables, and only with those variables.
Instrumental variables can be used to test and control for endogeneity (Kock, 2022a); a
situation that occurs when the structural error term for an endogenous variable is correlated with
one or more of the variable’s predictors. For example, let us consider a simple population model
(i.e., “true” model) with the following latent variable links: A > B and B > C.

Figure B.4.8. Using instrumental variables to address endogeneity

Save Close Help

What to create? Instrumental variable creation mode
Instrumental variable ~ Single stochastic variation sharing v

Notes: start by choosing what to create; analytic composites are aggregations of indicators with set weights, where the weights are defined by the user based on theory and
past research; instrumental variables can be used in many applications, such as controlling for endogeneity and analyzing reciprocal (nonrecursive) relationships.

Create instrumental variable

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

IMode: Single stochastic variation sharing

“** Latent variables

Awailable (click to choose only one): A B c D E F G
Selected (click to remove): A

“* Available instruments

Lat. vars. (click to choose one or more): A B c D E F G
Indicators (click to choose one or more): A B C D E F G
“** Instruments to be used

Selected (click to remove): C D

Type: Lat. var. Lat. var.

Std. regression coeff.: 0.248 0.098

P value: <0.001 <0.001

*** Correls. with lat. vars. A B C D E F G
Correlation: 0.104 -0.035 0.248 0.098 0.101 -0.007 0.024

“** Create instrumental variable (click)? Yes

This model presents endogeneity with respect to C, because variation flows from A to C via B,
leading to a biased estimation of the path for the link B > C via ordinary least squares regression.
Adding a link from A to C could be argued as “solving the problem”, but in fact it creates an
even more problematic scenario: the possibility of a type I error, since the link A > C does not
exist at the population level. A more desirable solution to this problem is to create an
instrumental variable iC, incorporating only the variation of A that ends up in C and nothing else,
and revise the model so that it has the following links: A>B,B > Cand iC>C. The linkiC>C
can be used to test for endogeneity, via its P value and effect size. This link (i.e., iC > C) can also
be used to control for endogeneity, thus removing the bias when the path coefficient for the link
B > C is estimated via ordinary least squares regression. To create instrumental variables so that
you can test and control for endogeneity you should use the sub-option “Single stochastic
variation sharing”. The underlying technique, variation sharing, is discussed by Kock & Sexton
(2017).
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B.4.9. Instrumental variables: Reciprocity

Instrumental variables can also be used to estimate reciprocal relationships (see Figure
B.4.9). For this, you should use the sub-option “Reciprocal stochastic variation sharing”
(Kock, 2023a; Morrow & Conger, 2021). A third sub-option, labeled “Instrument variables
composite”, is available for completeness but is not recommended. (This third sub-option refers
to an old method used in econometrics to address endogeneity that unfortunately tends to add
massive collinearity to almost any model.)

Figure B.4.9. Using instrumental variables to estimate reciprocal relationships

Save Close Help

What to create? Instrumental variable creation mode
Instrumental variable ~ Reciprocal stochastic variation sharing ~

Notes: start by choosing what fo create, analytic composites are aggregations of indicators with set weights, where the weights are defined by the user based on theory and
past research; instrumental variables can be used in many applications, such as controlling for endogeneity and analyzing reciprocal (nonrecursive) relationships.

Create instrumental variables

Mode: Reciprocal stochastic variation sharing

*** Reciprocal |atent variables

Awvailable (click to choose only twa): A B C D E F G
Selected (click to remove): c D

*** Reciprocal links and coeffs.

Link: C->D D-=C

Std. regression coeff. 0.390 0.251

P value: <0.001 <0.001

*** Create two instrumental variables (click)? Yes

To illustrate the sub-option “Reciprocal stochastic variation sharing” let us consider a
population model with the following latent variable links: A>C,B>D,C>Dand D >C. To
test the reciprocal relationship (Morrow & Conger, 2021) between C and D you should first
control for endogeneity in C and D, due to variation coming from B and A respectively, by
creating two instrumental variables iC and iD via the sub-option “Single stochastic variation
sharing” and adding these variables to the model. Next you should create two other instrumental
variables through the sub-option “Reciprocal stochastic variation sharing”, which we will call
here iCrD and iDrC, referring to the conceptual reciprocal links C > D and D > C respectively.
(No links between C and D should be included in the model graph, since reciprocal links cannot
be directly represented in this version of the software.)

The final model, with all the links, would be as follows: A>C,iC>C,B>D,iD>D, iDrC >
D and iCrD > C. Here the link iDrC > D represents the conceptual link C > D, and can be used to
test this conceptual link; and the link iCrD > C represents the conceptual link D > C, and can be
used to test this conceptual link. In this example it is possible that significant collinearity may be
added to the model — e.g., between iDrC and C, and/or iCrD and D — particularly for reciprocal
effects of medium to large sizes. Given this, the model should be tested for full collinearity
(through the inspection of full collinearity variance inflation factors) prior to the inclusion of the
reciprocal instrumental variables, and only for vertical collinearity (through the inspection of
block variance inflation factors) after those instrumental variables are included in the model.
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B.4.10. Categorical-numeric-categorical conversion

The menu option “Explore categorical-numeric-categorical conversion” allows you to
perform categorical-to-numeric and numeric-to-categorical conversions (see Figure B.4.10). In a
numeric-to-categorical conversion one or more of the following numeric variables are
converted into a single data label variable: latent variable, standardized indicator, and/or
unstandardized indicator. This option is useful in multi-group analyses (Kock, 2014a) where the
investigator wants to employ more than one numeric field for grouping. For example, let us
assume that the following two unstandardized indicators are available: C, with the values 1 and 0
referring to individuals from the countries of Brazil and New Zealand; and G, with the values 1
and 0 referring to females and males. By using a numeric-to-categorical conversion a researcher
could create a new data label variable to conduct a multi-group analysis based on four groups:
“C=1G=1" (females from Brazil), “C=1G=0" (males from Brazil), “C=0G=1" (females from
New Zealand), and “C=0G=0" (males from New Zealand).

Figure B.4.10. Explore categorical-numeric-categorical conversion

Save Close Help

Conversion type Categorical-to-numeric conversion mode
Categorical-to-numeric ~ Anchaor-factorial with fixed variation ~

Motes: siart by selecting a conversion type, categorical variables are stored as label variables, each calegorical-fo-numeric conversion employs at least one anchor latent
variable; possible anchor latent variables are priority-ordered from left to right; numeric-to-categorical conversions can be useful in multi-group analyses.

Categorical-to-numeric conversion

Maode: Anchor-factarial with fixed variation

Current categorical variables

Click to choose (only one): JSatGroup  ECollabGroup

Categorical variable to be converted

Selected(chckmremnve} JSatGroup (2 catgs.) (N=300)

Possible anchor latent variables

Chckmchooseuneor mare: JSat Success ECollab*Projmgt  ECaollab Projmgt
\Abs. correl. with categorical variable: 0.822 0.209 0.008 0.007 0.005

Latent variables to be used

(Mone selected)
(Mone selected)

“** Create numeric variable {click)? Yes

In a categorical-to-numeric conversion a user can convert a categorical variable, stored as a
data label variable, into a numeric variable that is then added to the dataset as a new standardized
indicator. This new variable can subsequently be used as a new indicator of an existing latent
variable, or as a new latent variable with only one-indicator (i.e., as a structural variable, making
up the inner model). Three categorical-to-numeric conversion modes are available: anchor-
factorial with fixed variation, anchor-factorial with variation diffusion (Kock, 2020b), and
anchor-factorial with variation sharing. The following general rules of thumb are recommended
for the use of these modes.

The anchor-factorial with fixed variation mode should be employed when the new variable
is expected to be included in the model as a new indicator of an existing latent variable; here if
more than one anchor is chosen, only the anchor with the highest correlation will be used. The
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anchor-factorial with variation diffusion mode (Kock, 2020b) should be employed when the
new variable is expected to be included in the model as a control variable; this option may be
useful in multilevel analyses (Kock, 2020b), as a more sophisticated alternative to the group
mean variable approach discussed by Kock & Hadaya (2018). The anchor-factorial with
variation sharing mode should be employed when the new variable is expected to be included
in the model as a one-indicator latent variable (i.e., as a structural variable with one single

indicator) that is expected to significantly influence and/or be influenced by other latent variables
in the model.
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B.4.11. Consistent PLS outputs

The menu option “Explore Dijkstra’s consistent PLS outputs” (see Figure B.4.11) allows
you to obtain key outputs generated based on Dijkstra's consistent PLS (a.k.a. PLSc) technique,
so named in honor of its developer — Theo K. Dijkstra. These outputs include PLSc reliabilities
for each latent variable, also referred to as Dijkstra's rho_a's, which appear to be, in many
contexts, better approximations of the true reliabilities than the measures usually reported in
PLS-based SEM contexts — the composite reliability and Cronbach’s alpha coefficients.

Figure B.4.11. Explore Dijkstra's consistent PLS outputs

Save Close Help

Confidence level used (range: 0.5 to 0.99)
0.950

Notes: leave cell empty for default value; these outputs are primarily for tests employing PLSc reliabities and loadings; in a test with a T ratio, generally the
hypathesis is supported if T ratio = critical T ratio; one-tailed tests are used for directional hypotheses; in a test with a confidence interval, generally the
hypothesis is supported if zero is not in the interval.

PLSc reliabilities (Dijkstra’s tho_a's)
ECollab Projmgt Success  JSat ECollab*Projmagt
0.706 0.672 0.651 0.691 1.000
ECollab Projmgt Success  JSat ECollab™Projmgt
ECallab1 0.575
ECaollab2 0.443
ECaollab3 0.820
Projmgt1 0.597
Projmgt2 0.649
Projmgt3 0.661
Success1 0.623
Success? 0.599
Success3 0.633
JSat1 0.768
JSat2 0.574
JSat3 0.560

Also included in the outputs generated via this menu option are PLSc loadings; along with the
corresponding standard errors, one-tailed and two-tailed P values, T ratios, and confidence
intervals. Given that some of these outputs depend on the confidence level used, this menu
option allows you to set that confidence level. As noted earlier, normally the confidence level
used is the complement of the significance level used (i.e., 1 minus the significance level used).
For instance, if the significance level used is 0.05, then the confidence level used should
normally be set at 0.95 (which is also the software’s default).
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B.4.12. Logistic regression

The menu option “Explore logistic regression” allows you to create a logistic regression
variable (Kock, 2023b) as a new indicator that has both unstandardized and standardized values
(see Figure B.4.12). Logistic regression is normally used to convert an endogenous variable on a
non-ratio scale (e.g., dichotomous) into a variable reflecting probabilities. You need to choose
the variable to be converted, which should be an endogenous variable, and its predictors. The
new logistic regression variable is meant to be used as a replacement for the endogenous variable
on which it is based.

Figure B.4.12. Explore logistic regression

What type of variable to create?
Logistic regression (probit) <

Notes: start by choosing the logistic regression type; logistic regression is normally used to convert arl
reflecting probabilities; you need to choose the variable to be converted, and its predictors.

Create logistic regression variable

Logistic regression type chosen: Logistic regression (probit)
Local full collin. VIF cap for log. reg. var. (click to change) 2.500

*=* Avallable variables
Lat. vars. (click to choose one or more): JP TU ED PS
Indicators (click to choose one or more): TU1 Tuz2 TU3 TU4 i

*** Variables to be used

‘ar. to be converted (click to remove): JP (N.D Vs.=2) (N=300)
Predictors (click to remove) TU ED PS

“** Linear coefficients

Variables involved JP TU ED PS
Sid. regressions: 0.419 0.418 0.313
P values: <0.001 <0.001 <0.001
Correlations: 0.560 0.553 0.414
Local full collin. VIFs 2474 1.508 1.501 1.267
Mo. diff. vals. 300 300 300 300
*** Create logistic regression variable (click)? Yes

Two algorithms are available: probit and logit (Kock, 2023b). The former is recommended for
dichotomous variables; the latter for non-ratio variables where the number of different values
(a.k.a. “distinct observations”) is greater than 2 but still significantly smaller than the sample
size; e.g., 10 different values over a sample size of 100. The unstandardized values of a logistic
regression variable are probabilities; going from 0 to 1. Since a logistic regression variable can
be severely collinear with its predictors, you can set a local full collinearity VIF cap for the
logistic regression variable. Predictor-criterion collinearity, or lateral collinearity (Kock & Lynn,
2012), is rarely assessed or controlled in classic logistic regression algorithms.

You can view the number of different values (a.k.a. “distinct observations”) for all indicators
and latent variables, as well as the ratio between the number of different values and sample size.
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The first is an absolute and the second a relative variation measure. These are available under the

menu options “View or save correlations and descriptive statistics for indicators” and “View
latent variable coefficients”, respectively. These measures can help inform decisions about

whether to use logistic regression, particularly in connection with endogenous latent variables.

If the number of different values is significantly smaller than the sample size for an
endogenous latent variable, that means that a new logistic regression variable could be created
and used as a replacement for the endogenous variable. One example would be 10 different
values over a sample size of 100; or a 0.1 ratio between the number of different values and
sample size. If several predictors are available, the new logistic regression variable will
incorporate more variation than the endogenous variable on which it is based, which will
typically be reflected in larger coefficients of association (e.g., path coefficients).
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B.4.13. Additional model fit and quality indices

The menu option “Explore additional coefficients and indices” allows you to obtain an
extended set of model fit and quality indices (see Figure B.4.13). This extended set of model fit
and quality indices includes the classic indices normally included in reports of SEM analyses
employing this software, as well as new indices that allow investigators to assess the fit between
the model-implied and empirical indicator correlation matrices (Kock, 2020c). These new
indices are the standardized root mean squared residual (SRMR), standardized mean
absolute residual (SMAR), standardized chi-squared (SChS), standardized threshold
difference count ratio (STDCR), and standardized threshold difference sum ratio (STDSR).

Figure B.4.13. Extended set of model fit and quality indices

Save Close Help

What to display?
Maodel fit and quality indices (extended set) ~

Notes: here you can view additional coefficients and indices that are not available elsewhere in this software, or that cannot be seen together in one single place; select what
you want to display.

Model fit and quality indices {extended set)

Quter model analysis algorithm: PLS Regression

Classic indices Additional indices (indicator corr. matrix fit)

Average path coefficient (APC)=0.287, P<0.001 Standardized root mean squared residual (SRMR)=0.111, acceptable if <= 0.1

\Average R-squared (ARS)=0.246, P<0.001 Standardized mean absolute residual (SMAR)=0.091, acceptable if <= 0.1

\Average adjusted R-squared (AARS)=0.241, P<0.001 Standardized chi-squared with 65 degrees of freedom (SChS)=2.390, P<0.001

\Average block VIF (AVIF)=1.074, acceptable if <= 5, ideally <= 3.3 Standardized threshold difference count ratio (STDCR)=0.894, acceptable if >= 0.7, ideally = 1
Average full collinearity VIF (AFVIF)=1.292, acceptable if <= 5, ideally <= 3.3 Standardized threshold difference sum ratio (STDSR)=0.750, acceptable if == 0.7, ideally =1

Tenenhaus GoF (GoF)=0.409, small >= 0.1, medium == 0.25, large >= 0.36
Sympson's paradox ratio (SPR)=1.000, acceptable if »= 0.7, ideally = 1
R-squared contribution ratio (RSCR)=1.000, acceptable if == 0.9, ideally =1
Statistical suppression ratio (SSR)=1.000, acceptable if == 0.7

MNonlinear bivariate causality direction ratio (NLBCDR)=1.000, acceptable if >= 0.7

As with the classic model fit and quality indices, the interpretation of these new indices
depends on the goal of the SEM analysis. Since these indices refer to the fit between the model-
implied and empirical indicator correlation matrices (Kock, 2020c), they become more
meaningful when the goal is to find out whether one model has a better fit with the empirical
data than another model. In many cases additional insights can be obtained by using these indices
in conjunction with the classic indices. When assessing the model fit with the data, several
criteria are recommended. These criteria are discussed below, together with the discussion of
these new model fit and quality indices (Kock, 2020c).

SRMR and SMAR. The SRMR index is calculated as the square root of the mean of the sum
of the squared differences between the contents of non-redundant cells of the model-implied and
empirical indicator correlation matrices. The SMAR index is calculated as the mean of the sum
of the absolute differences between those matrices. The model-implied indicator correlation
matrix is obtained based on the model parameters (e.g., weights and loadings) estimated by the
software. The empirical indicator correlation matrix is simply the matrix containing the
correlations among the indicators used in the model. The non-redundant cells of these matrices
are the upper or lower triangular cells, excluding the diagonal cells. Generally SRMR and
SMAR values lower than 0.1 indicate acceptable fit (Kock, 2020c).
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SChS. The SChS index is calculated as the chi-squared coefficient obtained from a test of
independence comparing the contents of non-redundant cells of the model-implied and empirical
indicator correlation matrices. Here the contents of non-redundant cells of the model-implied
indicator correlation matrix are treated as the observed values in a chi-squared test of
independence, whereas the corresponding values in the empirical indicator correlation matrix are
treated as the expected values. The number of degrees of freedom is calculated as the number of
non-redundant cells minus 1, in line with what is usually done in traditional chi-squared tests of
independence. For simplicity and consistency of application with respect to other model fit and
quality indices, the P value associated with each SChS is calculated as the complement of the P
value generated by the chi-squared test of independence (i.e., 1 minus that P value). Normally
acceptable fit is indicated by a P value associated with a SChS that is equal to or lower than
0.05; that is, significant at the 0.05 level (Kock, 2020c). This refers to the modified P value; the
smaller it is, the better the fit.

STDCR and STDSR. The STDCR and STDSR indices are measures of the extent to which a
model is free from instances in which the contents of non-redundant cells of the model-implied
indicator correlation matrix differ significantly from the corresponding empirical indicator
correlation matrix values. Here a heuristic threshold is used to establish whether two values
differ significantly; this threshold is 0.2, twice the model-wide acceptable fit threshold for the
SRMR and SMAR indices. The STDCR is calculated by dividing the number of non-redundant
cells where significant differences do not exist by the total number of non-redundant cells. The
STDSR index is calculated as the complement of the ratio obtained by dividing the sum of the
absolute values of the differences between non-redundant cells where a significant difference
exists by the total sum of the absolute values of the differences between non-redundant cells.
These new STDCR and STDSR indices are calculated so that they can be used in ways
analogous to other classic fit indices generated by this software. Generally values of the STDCR
and STDSR equal to or greater than 0.7 indicate acceptable fit (Kock, 2020c).
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B.4.14. Additional reliability coefficients

The menu option “Explore additional coefficients and indices” also allows you to obtain an
extended set of reliabilities (or reliability coefficients). This extended set of reliabilities (see
Figure B.4.14) includes the classic reliability coefficients normally included in reports of SEM
analyses employing this software, plus the following, for each latent variable in your model:
Dijkstra's PLSc reliability (also available via the menu option “Explore Dijkstra's consistent PLS
outputs”), true composite reliability, and factor reliability.

Figure B.4.14. Extended set of reliability coefficients

Save Close Help

What to display?
Reliabilities (extended set) ~

Notes: here you can view additional coefficients and indices that are not available elsewhere in this software, or that cannot be seen together in one single place; select what
you want to display.

Reliabilities {extended set)

Quter model analysis algorithm: PLS Regression

Classic reliability coeffs.

ECollab Prajmagt Success  J3at ECollab*Projmgt
Composite reliability 0.813 0.820 0.811 0.821 1.000
Cronbach’s alpha 0.656 0.671 0.650 0.673 1.000
Additional reliability coeffs.

ECollab Prajmagt Success  J3at ECollab*Projmgt
Dijkstra's PLSc reliability 0.706 0.672 0.651 0.691 1.000
True composite reliability 0.813 0.820 0.811 0.821 1.000
Factor reliability 0.813 0.820 0811 0.821 1.000

When factor-based PLS algorithms are used in analyses, the true composite reliability and
the factor reliability are produced as estimates of the reliabilities of the true composites and
factors (Kock, 2015b; 2017; 2019a; 2019b; 2019c). They are calculated in the same way as
composite reliabilities, but with different loadings. These reliabilities are calculated after the
iterative estimation process is complete, based on the final true composite and factor estimates,
whereas the composite reliabilities are calculated during the iterative estimation process. When
classic composite-based (i.e., non-factor-based) algorithms are used, both true composites and
factors coincide, and are approximated by the composites generated by the software. As such,
true composite and factor reliabilities equal the corresponding composite reliabilities whenever
composite-based algorithms are used.
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B.4.15. Additional discriminant validity outputs

The menu option “Explore additional coefficients and indices” also allows you to obtain an
extended set of discriminant validity coefficients (see Figure B.4.15). This extended set of
discriminant validity coefficients includes the classic coefficients used in discriminant validity
assessment normally included in reports of SEM analyses employing this software, namely the
correlations among latent variables and the square roots of those latent variables’ AVES (shown
on a table, with the square roots of AVEs along the diagonal). To these are added the following
discriminant validity assessment coefficients: structure loadings and cross-loadings, full
collinearity VIFs, as well as HTMT and HTMT?2 ratios.

Figure B.4.15. Extended set of discriminant validity coefficients

Save Close Help
What to display?
Discriminant validity coefficients (extended set) v
Notes: here you can view additional coefficients and indices that are not available elsewhere in this software, or that cannot be seen together in one single place; select what
you want to display.
Full collinearity VIFs
ECollab Projmgt Success  JSat ECollab*Projmgt
1.154 1.279 1.587 1.126 1312
HTMT ratios
(good if < 0.90, best if < 0.85)
ECollab Projmgt Success  JSat ECollab*Projmgt
ECollab
Projmgt 0.530
Success 0.229 0.472
JSat 0.093 0.126 0.435
ECollab*Projmgt
P values (one-tailed) for HTMT ratios
(good if < 0.05)
ECollab Projmgt Success  JSat ECollab*Projmgt

Discriminant validity assessment addresses the quality of a measurement instrument. The
instrument itself is typically a set of question-statements, which are typically answered by
multiple individuals as part of the administration of a questionnaire to those individuals. A
measurement instrument has good discriminant validity if the question-statements (or other
measures) associated with each latent variable are not confused by the respondents, in terms of
their meaning, with the question-statements associated with other latent variables.

HTMT and HTMT?2 ratios have been proposed for discriminant validity assessment
particularly in the context of composite-based SEM via classic PLS algorithms; as opposed to
factor-based SEM via modern algorithms that estimate factors (which have been available from
this software for quite some time now). Our simulations suggest that these HTMT and HTMT2
ratios are not particularly useful when used in combination with factor-based algorithms; the
classic correlations among latent variables and square roots of AVES seem to be a better choice.
For the HTMT and HTMT2 ratios, the following coefficients are also provided: P values, and
90% confidence intervals.
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B.5. Settings

The “Settings” menu options allow you to view or change general SEM analysis settings (see
Figure B.5). Here you can select the analysis algorithm used in the SEM analysis, the resampling
method used to calculate standard errors and P values, as well as other elements that will define
how the SEM analysis will be conducted. These menu options are discussed individually below.
Several of them are discussed in more detail later in this document.

Figure B.5. Settings menu options

View or change general settings

View or change individual inner model analysis algorithm settings
View or change moderating effects settings

View or change missing data imputation settings

View or change data modification settings

View or change individual latent variable weight and loading starting value settings

The “View or change general settings” option allows you to set the outer model analysis
algorithm, default inner model analysis algorithm, resampling method, and number of resamples.
Through these sub-options, users can set outer and default inner model algorithms separately.
Users are also allowed to set inner model algorithms for individual paths through a different
option. If users choose not to set inner model algorithms for individual paths in an analysis of a
new model (i.e., a model that has just been created), their choice of default inner model
algorithm is automatically used for all paths.

The “View or change individual inner model analysis algorithm settings” option allows
you to set inner model algorithms for individual paths. That is, for each path a user can select a
different algorithm from among the following choices: “Linear”, “Warp2”, “Warp2 Basic”,
“Warp3”, and “Warp3 Basic”. This option is particularly useful in empirical investigations where
researchers have solid theoretical reasons to expect certain paths to be associated with nonlinear
relationships of particular types (for an example of nonlinear theorizing in an action research
context see: Kock et al., 2017). Those researchers may also have solid theoretical reasons to
expect certain paths to be associated with linear relationships. Given that one of the main goals
of SEM is to test theory, theoretical considerations should be given a very high priority in the
selection of algorithms to be used for each path in a model.

The “View or change moderating effects settings” option allows you to set the moderating
effects calculation option to be used by the software. You can choose among three options for
moderating effects calculation: Two Stages, Variable Orthogonalization, and Indicator
Products. The default moderating effects calculation option is Two Stages. All of these options
apply to moderating effects that are explicitly included in the model, Moderating effects involve
moderating variables and moderating links; the latter occurring between the moderating variables
and direct links to which the variables point. Another test of similar effects, which complements
these three options, is the full latent growth test (Hubona & Belkhamza, 2021; Kock, 2020a).
This test could be seen as a comprehensive analysis of moderating effects where the moderating
variable is “latent”, in the sense that it does not “disrupt” the model in any way. That is, in a full
latent growth test, the moderating links are not explicitly included in the model, which makes its
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results similar to those of multi-group analyses where no sample segmentation occurs (Kock,
2020a).

The “View or change missing data imputation settings” option allows you to set the missing
data imputation method to be used by the software, from among the following methods:
Arithmetic Mean Imputation (the software’s default), Multiple Regression Imputation,
Hierarchical Regression Imputation, Stochastic Multiple Regression Imputation, and Stochastic
Hierarchical Regression Imputation. The missing data imputation method chosen will be used
prior to execution of Step 3, and also after that when the option “Redo missing data
imputation (via data pre-processing)” under the “Modify” menu option is selected. Kock
(2014c) and Kock (2018a) provide a detailed discussion of these methods, as well as of a Monte
Carlo simulation whereby the methods’ relative performances are investigated.

The “View or change data modification settings” option allows you to select a range
restriction variable type, range restriction variable, range (min-max values) for the restriction
variable, and whether to use only ranked data in the analysis. Through these sub-options, users
can run their analyses with sub-samples defined by a range restriction variable, which is chosen
from among the indicators available. They can also conduct their analyses with only ranked data,
whereby all of the data is automatically ranked prior to the SEM analysis. When data on a ratio
scale is ranked, typically the value distances that typify outliers are significantly reduced,
effectively eliminating outliers without any decrease in sample size.

The “View or change individual latent variable weight and loading starting value
settings” option allows you to set the initial values of the weights and loadings for each latent
variable. The default is 1 for all weights and loadings. With this option, latent variables measured
in a reversed way, as well as formative latent variables with most of their weights and loadings
ending up being negative, can be more easily operationalized.

Several of the options above, and their component elements, are discussed in more detail in
the subsections below, still in this section describing the main window options. These
subsections include further discussions about data labels, general settings, data modification
settings, individual inner model analysis algorithm settings, as well as individual latent variable
weight and loading starting value settings. A further discussion of grouped descriptive statistics,
which can be saved through a sub-option under the “Data” options, is also provided.
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B.6. General settings

The “View or change general settings” option allows users to set the outer model analysis
algorithm, default inner model analysis algorithm, resampling method, and number of resamples
(see Figure B.6). Through these sub-options, users can set outer and default inner model
algorithms separately. Users are also allowed to set inner model algorithms for individual paths,
but through a different settings option. If users choose not to set inner model algorithms for
individual paths, their choice of default inner model algorithm is automatically used for all paths.

Figure B.6. View or change general settings window

Factor-Based PLS Type CFM3
Factor-Based PLS Type CFM2
Factor-Based PLS Type REG2
Warp2 Factor-Based PLS Type PTH2
Warp2 Basic Factor-Based PLS Type CFM1
Warp3 Factor-Based PLS Type REG1

Warp3 Basic Factor-Based PLS Type PTH1
P PLS Regression
Outer model analysis algorithm: | PLS Mode M
PLS regression PLS Mode M Basic
Y PLS Mode A
Default inner model at"n_alysis algorithm: PLS Mode A Basic
. PLS Mode B

Linear .
PLS Mode B Basic

Robust Path Analysis

Resampling method:

Stable e L | Stable2

No. of resamples=sample size Stable3
Bootstrapping
Jackknifing
Blindfolding
Parametric

The settings chosen for each of the options can have a dramatic effect on the results of a
SEM analysis. At the same time, the right combinations of settings can provide major insights
into the data being analyzed. As such, the settings’ options should be used with caution, and
normally after a new project file (with a unique name) is created and the previous one saved.
This allows users to compare results and, if necessary, revert back to project files with previously
selected settings. Given that one of the main goals of SEM is to test theory, theoretical
considerations should be given a very high priority in the selection of combinations of settings.

A key criterion for the calculation of the weights, observed in virtually all classic PLS-based
algorithms, is that the regression equation expressing the relationship between the indicators and
the latent variable scores has an error term that equals zero. In other words, in classic PLS-based
algorithms the latent variable scores are calculated as exact linear combinations of their
indicators. This is not the case with the “Factor-Based PLS” algorithms provided by this
software, as these algorithms estimate latent variable scores fully accounting for measurement
error (Kock, 2017; 2019a; 2019b; 2019c).

In nonlinear SEM analyses, the warping takes place during the estimation of path coefficients,
and after the estimation of all weights, latent variable scores, and loadings in the model. The
weights and loadings of a model with latent variables make up what is often referred to as the
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outer model (a.k.a. measurement model), whereas the path coefficients among latent variables
make up what is often called the inner model (a.k.a. structural model).
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B.6.1. Outer model analysis algorithms

The outer model analysis algorithms available are Factor-Based PLS Type CFM3, Factor-
Based PLS Type CFM2, Factor-Based PLS Type REG2, Factor-Based PLS Type PTH2,
Factor-Based PLS Type CFM1, Factor-Based PLS Type REG1, Factor-Based PLS Type
PTHL1, PLS Regression, PLS Mode M, PLS Mode M Basic, PLS Mode A, PLS Mode A
Basic, PLS Mode B, PLS Mode B Basic, and Robust Path Analysis. All of these outer model
algorithms share a common characteristic. They calculate latent variable scores as exact linear
combinations of their indicators, or of their indicators and measurement errors. With the
exception of the Robust Path Analysis algorithm, all of these algorithms perform iterations until
they converge to a solution.

There has been a long and in some instances fairly antagonistic debate among proponents and
detractors of the use of Wold’s original PLS algorithms (Adelman & Lohmoller, 1994; Kock,
2015b; 2019a; 2019b; 2019c; Lohméller, 1989; Wold, 1980) in the context of SEM. This debate
has been fueled by one key issue, which is analogous to the issue underlying the related principal
components versus factor analysis debate. Wold’s original PLS algorithms do not deal with
actual factors, as covariance-based SEM algorithms do; but with composites, which are exact
linear combinations of indicators (Kock, 2015a; 2015b; 2017; 2019a; 2019b; 2019c¢). The
“Factor-Based PLS” algorithms provided by this software have been developed specifically
to address this perceived limitation of Wold’s original PLS algorithms. Both composites and
factors can be used in the combination in the same SEM model using the multi-algorithm
technique discussed by Kock (2024a).

The Factor-Based PLS Type CFM3, Factor-Based PLS Type CFM2 and Factor-Based
PLS Type CFM1 algorithms generate estimates of both true composites and factors, in two
stages, explicitly accounting for measurement error (Kock, 2015b; 2017). Like covariance-based
SEM algorithms, these algorithms are fully compatible with common factor model
assumptions, including the assumption that all indicator errors are uncorrelated. In their first
stages, these algorithms employ a new “true composite” estimation sub-algorithm, which
estimates composites based on mathematical equations that follow directly from the common
factor model. The second stage employs a new “variation sharing” sub-algorithm, which can be
seen as a “soft” version of the classic expectation-maximization algorithm (Dempster et al.,
1977; Kock, 2015b; Kock & Sexton, 2017) used in maximum likelihood estimation, with
apparently faster convergence and nonparametric properties. The Factor-Based PLS Type
CFM3 algorithm employs both loadings and reliabilities from Dijkstra's consistent PLS (a.k.a.
PLSc) technique; the former (i.e., loadings) to improve computation efficiency, and the latter
(i.e., reliabilities) to estimate measurement error and true composite weights. The Factor-Based
PLS Type CFM2 algorithm employs reliabilities from Dijkstra's consistent PLS technique, but
not loadings. The Factor-Based PLS Type CFML1 algorithm does not employ Dijkstra's
consistent PLS technique at all, instead using Cronbach’s alpha coefficients to estimate
measurement error and true composite weights.

Factor-Based PLS Type REG2, Factor-Based PLS Type PTH2, Factor-Based PLS Type
REGL1 and Factor-Based PLS Type PTH1 are also factor-based PLS algorithms that generate
estimates of both composites and factors, in two stages, fully accounting for measurement error.
The Factor-Based PLS Type REG2 and Factor-Based PLS Type REG1 algorithms first
estimate composites via PLS Regression (discussed below), and then estimate factors employing
variation sharing (Kock, 2015b; 2017; Kock & Sexton, 2017). Among the factor-based
algorithms available in this software, these Factor-Based PLS Type REG2 and Factor-Based PLS
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Type REGL1 algorithms can be seen as the closest to Wold’s original PLS design. The Factor-
Based PLS Type REG2 algorithm employs reliabilities from Dijkstra's consistent PLS
technique to estimate measurement error and true composite weights; the Factor-Based PLS
Type REG1 algorithm employs Cronbach’s alpha coefficients for that purpose.

The Factor-Based PLS Type PTH2 and Factor-Based PLS Type PTH1 algorithms first
estimate composites via Robust Path Analysis (discussed below), and then estimate factors
employing variation sharing (Kock, 2015b; 2017; Kock & Sexton, 2017). By doing so, these
algorithms address several of the concerns about Wold’s original PLS algorithms raised in an
important critical article by Ronkko & Evermann (2013). These algorithms can also be seen as
addressing the call for simplicity made in a thought-provoking article on PLS by Rigdon (2012).
These algorithms share a common characteristic with the algorithms discussed above. The
Factor-Based PLS Type PTH2 algorithm employs reliabilities from Dijkstra's consistent PLS
technique to estimate measurement error and true composite weights; while the Factor-Based
PLS Type PTH1 algorithm employs Cronbach’s alpha coefficients to estimate those weights.

Unlike the Factor-Based PLS Type CFM3, Factor-Based PLS Type CFM2 and Factor-Based
PLS Type CFM1 algorithms; the Factor-Based PLS Type REG2, Factor-Based PLS Type
PTH2, Factor-Based PLS Type REGL1 and Factor-Based PLS Type PTH1 algorithms do not
impose certain common factor model assumptions that some researchers have claimed do
normally hold in practice, such as the assumption that all indicator errors are uncorrelated.

PLS Regression has been the default outer model algorithm since the software’s inception,
and is maintained as such as a matter of tradition. This algorithm iterates until the outer model
weights become stable with the following calculations being performed in successive iterations
for each latent variable in the model: (a) the outer model weights are calculated through a least
squares regression where the latent variable is the predictor and the indicators are the criteria;
and (b) the latent variable is calculated as an exact linear combination of the indicator scores
(Kock & Mayfield, 2015; Kock & Moqgbel, 2016). In the PLS Regression algorithm, the inner
model does not influence the outer model. That is, the weights are not influenced by the links
connecting latent variables, which are created by the user in Step 4.

The following outer model algorithms are similar to PLS Regression, but in them the inner
model influences the outer model: PLS Mode M, PLS Mode M Basic, PLS Mode A, PLS
Mode A Basic, PLS Mode B, and PLS Mode B Basic. These are classic PLS algorithms that
have been historically associated with PLS-based SEM software (Chatelin et al., 2002; Kock,
2016a; Kock & Mayfield, 2015; Kock & Moqgbel, 2016; Temme et al., 2006). In them, the
iterative process leading to the calculation of latent variable scores involves the intermediate
calculation of path coefficients, correlations, and signs of correlations. These are used as inputs
in the calculation of weights in successive iterations, typically leading to the addition of
collinearity among latent variables that are linked.

The above collinearity inflation that occurs when the inner model influences the outer model
often has the effect of strengthening associations among linked latent variables, but not enough
to overcome to underestimation bias inherent in composite-based SEM algorithms (Kock, 2015a;
2015Db). This tendency toward collinearity inflation is a relatively small but real phenomenon that
has been presented as a weakness of PLS-based SEM, and that has been referred to as the
“capitalization on error” problem of PLS-based algorithms (see, e.g., Goodhue et al., 2012; Kock
& Hadaya, 2018). This problem is generally overstated, as PLS-based algorithms in general tend
to also reduce collinearity compared to covariance-based SEM. That is, when the inner model
influences the outer model collinearity is indeed increased, but often not to the extent that the
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increase offsets the previous collinearity decrease that normally results from the use of PLS-
based algorithms. Moreover, capitalization on error is only a problem in cases where minimum
sample size requirements are significantly underestimated (Kock, 2023c; Kock & Hadaya, 2018).

PLS Mode M is often referred as the “MIMIC” or “mixed” mode. In it, the inner model
influences the outer model through path coefficients. The outer model is estimated employing
factor-to-indicators or indicators-to-factor causality stances, depending on whether latent
variables are defined as formative or reflective (Amora, 2023; Kock & Mayfield, 2015; Kock &
Mogbel, 2016). PLS Mode M in fact uses either PLS Mode A or PLS Mode B, based on whether
latent variables are defined as reflective or formative, respectively. The PLS modes A and B are
discussed below.

PLS Mode M Basic is a variation of PLS Mode M in which the inner model influences the
outer model through the signs of correlations among latent variables. This corresponds to what
Lohmoller (1989) refers to as a “basic scheme”, also referred to as a “centroid scheme” (Kock &
Mayfield, 2015; Kock & Moqgbel, 2016; Tenenhaus et al., 2005).

For the purposes of PLS-based SEM, the schemes known as “centroid” and “factorial” are
largely redundant (Kock & Mayfield, 2015; Kock & Moqgbel, 2016; Tenenhaus et al., 2005),
but they share a common property. They tend to reduce the number of instances of Simpson’s
paradox (Kock, 2015e; Kock & Gaskins, 2016; Wagner, 1982) in the SEM analysis results.
Because of this property and the fact that these two schemes are redundant, this software
implements only one of them, the “centroid” scheme. This scheme is referred to as “basic”, for
simplicity and consistency with prior seminal publications that set the foundations of PLS-based
SEM (see, e.g., Kock & Mayfield, 2015; Kock & Moqgbel, 2016; Lohmdéller, 1989).

PLS Mode A is often referred to as the “reflective” mode, which is arguably incorrect because
both reflective and formative latent variables can be used with this algorithm (Kock & Mayfield,
2015; Kock & Moqgbel, 2016). In other words, using PLS Mode A does not make a formative
latent variable become a reflective latent variable (Kock & Mayfield, 2015). In it, the inner
model influences the outer model through path coefficients and correlations, depending on
whether the links go into or out from each latent variable, respectively. In this mode the outer
model weights are calculated through a least squares regression where the latent variable is the
predictor and the indicators are the criteria. PLS Mode A Basic is a variation of PLS Mode A in
which the inner model influences the outer model through the signs of the correlations among
latent variables.

PLS Mode B is often referred to as the “formative” mode. This is arguably incorrect for the
same reason discussed above, namely that both reflective and formative latent variables can be
used with this algorithm (Kock & Mayfield, 2015; Kock & Mogbel, 2016). In other words, using
PLS Mode B does not turn a reflective latent variable into a formative latent variable. However,
PLS Mode B is often less stable than PLS Mode A, and also tends to cause a significant increase
in collinearity among linked latent variables (Kock, 2021a; Kock & Mayfield, 2015). In it, the
inner model influences the outer model through path coefficients and correlations, depending on
whether the links go into or out from each latent variable, respectively. In this mode the outer
model weights are calculated through a least squares regression where the indicators are the
predictors and the latent variable the criterion. PLS Mode B Basic is a variation of PLS Mode B
in which the inner model influences the outer model through the signs of the correlations among
latent variables.

The Robust Path Analysis algorithm is a simplified algorithm in which latent variable scores
are calculated by averaging the scores of the indicators associated with the latent variables. That
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is, in this algorithm weights are not estimated through PLS Regression. This algorithm is called
“robust” path analysis, because a standard path analysis (Kock et al., 2022), where all latent
variables are measured through single indicators, can be conducted through it, and the P values
can be calculated through the nonparametric resampling or stable methods implemented through
the software. If all latent variables are measured with single indicators, the Robust Path Analysis
algorithm will yield latent variable scores and various parameters that are identical to those
generated through the other algorithms, but with greater computational efficiency.
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B.6.2. Inner model analysis algorithms

Many relationships in nature, including relationships involving behavioral variables, are
nonlinear (Kock, 2010; 2021c; 2016c; Kock & Gaskins, 2016) and follow a pattern known as U-
curve (or inverted U-curve). In this pattern a variable affects another in a way that leads to a
maximum or minimum value, where the effect is either maximized or minimized, respectively
(Kock, 2010; 2016¢; Kock & Gaskins, 2016). This type of relationship is also referred to as a J-
curve pattern; a term that is more commonly used in economics and the health sciences. For an
example of nonlinear theorizing in an action research context see: Kock et al. (2017).

The term “U-curve” is used here also to refer to nonlinear relationships that can be
represented as sections of a U curve. As such, it covers all noncyclical nonlinear relationships.
These relationships include the logarithmic, hyperbolic decay, exponential decay,
exponential, and quadratic relationships, among others. That is, these relationships can be
conceptually modeled as variations of U-curve relationships (Kock, 2010; 2016c; 2021c; Kock &
Gaskins, 2016; Kock et al., 2017).

The default inner model analysis algorithms available are the following: Linear, Warp2,
Warp2 Basic, Warp3, and Warp3 Basic. All of these inner model algorithms share a common
characteristic. They calculate path coefficients through least squares regression algorithms based
on the latent variable scores calculated through one of the outer model analysis algorithms
available.

The Linear algorithm does not perform any warping of relationships. The Warp2 algorithm
tries to identify U-curve relationships among linked latent variables, and, if those relationships
exist, the algorithm transforms (or “warps”) the scores of the predictor latent variables (Kock,
2010; 2016c) so as to better reflect the U-curve relationships in the estimated path coefficients in
the model. Here the signs of the path coefficients are initially (i.e. prior to the inner model least
squares regressions) assigned as the signs of the corresponding path coefficients obtained
without any warping. Similarly to the outer model “basic” versions, the Warp2 Basic algorithm
is a variation of the Warp2 algorithm that tends to reduce the number of instances of Simpson’s
paradox (Kock, 2015¢e; Kock & Gaskins, 2016; Wagner, 1982) in the final results. This happens
because in this basic version the signs of path coefficients are initially assigned as the signs of
the corresponding correlations obtained without any warping.

The Warp3 algorithm, the default algorithm used by the software, tries to identify
relationships among latent variables defined by functions whose first derivatives are U-curves
(Kock, 2010; Kock & Gaskins, 2016). These types of relationships follow a pattern that is more
similar to an S-curve (or a somewhat distorted S-curve). An S-curve can be seen as a
combination of two connected U-curves, one of which is inverted (Kock, 2010). Examples of S-
curve functions are the sigmoid, hyperbolic sine and hyperbolic tangent. The logistic function is
a type of sigmoid function, and thus is also an example of S-curve function. Similarly to the
Warp2 Basic algorithm, the Warp3 Basic algorithm is a variation of the Warp3 algorithm that
tends to reduce the number of instances of Simpson’s paradox (Kock, 2015e; Kock & Gaskins,
2016; Wagner, 1982) in the final results. Again, here this happens because the signs of path
coefficients are initially assigned as the signs of the corresponding correlations obtained without
any warping.

In summary, with the exception of the “Linear” algorithm, all of the default inner model
analysis algorithms perform nonlinear transformations on the predictor latent variable scores
prior to the calculation of path coefficients. In other words, except for the “Linear” algorithm,
these algorithms “warp” the predictor latent variable scores by finding best-fitting nonlinear
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functions that minimize sums of squared residuals on a bivariate basis (Kock, 2010; 2021c; Kock
& Gaskins, 2016). This process can be seen as another least squares minimization stage that is
“in between” those used in the calculation of latent variable scores and path coefficients.
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B.6.3. Resampling methods

One of several resampling methods may be selected for the calculation of P values and related
coefficients (e.g., standard errors). In the calculation of P values, a one-tailed test is generally
recommended if the coefficient is assumed to have a sign (positive or negative), which should be
reflected in the hypothesis that refers to the corresponding association (Kock, 2015a). Hence this
software reports one-tailed P values for coefficients used in hypothesis testing (e.g., path
coefficients); from which two-tailed P values can be easily obtained if needed (Kock, 2015a).
The software also reports at several points, in addition to one-tailed P values: two-tailed P
values, T ratios, and confidence intervals. The available resampling methods used to generate
standard errors, which are in turn used in the calculation of P values and other hypothesis-testing
coefficients (Kock, 2014b; 2016b; 2018Db), are the following: Stablel, Stable2, and Stable3,
Bootstrapping, Jackknifing, Blindfolding, and Parametric.

With the Stablel method, the software’s default up until version 4.0 (when it was called
simply the “stable” method), P values are calculated through nonlinear fitting of standard errors
to empirical standard errors generated with the other resampling methods available. In other
words, the Stablel method could be viewed as a quasi-parametric method that yields P values
that try to approximate the “average” P values generated by the software’s other resampling
methods.

The Stable2 and Stable3 methods have been developed as alternatives to the Stablel method.
Unlike the Stablel method, they rely on the direct application of exponential smoothing formulas
(for details, see: Kock, 2014b and Kock, 2018b), and that can thus be more easily implemented
and tested by methodological researchers. Several Monte Carlo experiments show that the
Stable2 and Stable3 methods yield estimates of the actual standard errors that are consistent
with those obtained via bootstrapping, in many cases yielding more precise estimates of the
actual standard errors (Kock, 2014b; 2018b; Kock & Hadaya, 2018). The more accurate of the
two methods seems to be the Stable3 method, which also appears to be more accurate than the
Stablel method. As such, the Stable3 method is set as the software’s default starting in
version 5.0.

With the Parametric method, P values are calculated assuming multivariate normality and
also that path coefficient estimates are distributed as expected based on the central limit theorem.
Neither the Parametric method nor the three “stable” methods (Stablel, Stable2 and Stable3)
actually generates resamples, so calling them resampling methods is done here for simplicity in
the grouping of settings options. Because no resamples are generated, these are the most efficient
of the methods from a computing load perspective. These methods can be particularly useful in
the analysis of large datasets, as in these cases creating resamples can be computationally very
taxing. With the emergence of the concept of “big data”, the need to analyze large datasets is
becoming increasingly common.

Bootstrapping employs a resampling algorithm that creates a number of resamples (a number
that can be selected by the user), by a method known as “resampling with replacement”. This
means that each resample contains a random arrangement of the rows of the original dataset,
where some rows may be repeated. The commonly used analogy of a deck of cards being
reshuffled, leading to many resample decks, is a good one; but not entirely correct because in
Bootstrapping the same “card” may appear more than once in each of the resample “decks”.

Jackknifing, on the other hand, creates a number of resamples that equals the original sample
size, and where each resample has one row removed. That is, the sample size of each resample is
the original sample size minus 1. Thus, when Jackknifing is selected the number of resamples
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is automatically set as the sample size. This refers to the most common form of jackknifing,
also known as “delete-1” and “classic” jackknifing, which is the one implemented through this
software.

Blindfolding employs a resampling algorithm that creates a number of resamples (a number
that can be selected by the user) by a method whereby each resample has a certain number of
rows replaced with the means of the respective columns. The number of rows modified in this
way in each resample equals the sample size divided by the number of resamples. For example,
if the sample size is 200 and the number of resamples selected is 100, then each resample will
have 2 rows modified. If a user chooses a number of resamples that is greater than the sample
size, the number of resamples is automatically set to the sample size (as with Jackknifing).

The default number of resamples for Bootstrapping and Blindfolding is 100. It can be
modified by entering a different number in the appropriate edit box. (Please note that we are
talking about the number of resamples here, not the sample size of the original dataset.) Leaving
the number of resamples for Bootstrapping as 100 is recommended because it has been
shown that higher numbers of resamples lead to negligible improvements in the reliability of P
values (see, e.g., Goodhue et al., 2012). In fact, according to the original developer of the
Bootstrapping method, even setting the number of resamples at 50 is likely to lead to fairly
reliable P value estimates (Efron et al., 2004).

Conversely, increasing the number of resamples well beyond 100 leads to a higher
computation load on the software, making the software look like it is having a hard time coming
up with the results. In very complex models, a high number of resamples may make the software
run very slowly. Some researchers have suggested in the past that a large number of resamples
can address problems with the data, such as the presence of outliers due to errors in data
collection. This opinion is not shared by the original developer of the Bootstrapping method,
Bradley Efron (see, e.g., Efron et al., 2004).

Not considering the “stable” methods, arguably Jackknifing is particularly good at addressing
problems associated with the presence of outliers due to errors in data collection. Generally
speaking, Jackknifing tends to generate more stable resample path coefficients (and thus more
reliable P values) with small sample sizes (lower than 100), and with samples containing outliers
(see, e.g., Chiquoine & Hjalmarsson, 2009). Monte Carlo simulations suggest that the “stable”
methods perform better than Jackknifing in this respect (Kock, 2014b; 2018b).

Again, not considering the “stable” methods, Bootstrapping tends to generate more stable
resample path coefficients (and thus more reliable P values) with larger samples and with
samples where the data points are evenly distributed on a scatter plot. Monte Carlo simulations
suggest that the “stable” methods perform better than Bootstrapping in this respect as well
(Kock, 2014b; 2018b). The use of Bootstrapping with small sample sizes (lower than 100) has
been discouraged (Nevitt & Hancock, 2001; Kock, 2018b).

Generally speaking, Bootstrapping and Jackknifing can be seen as complementary resampling
methods, in that one tends to perform well in situations where the other does not, and vice-versa.
Nevertheless, the “stable” methods provided by this software seem to be an improvement over
them, as indicated by Monte Carlo simulations (Kock, 2014b; Kock, 2018b). A set of related
Monte Carlo simulations reported by Kock & Hadaya (2018) suggests that the “stable” methods
help avoid the “capitalization on error” problem, often associated with PLS-based SEM, when
appropriate sample sizes are employed in empirical studies (see, also: Kock, 2018b).

Blindfolding tends to perform somewhere in between Jackknifing and Bootstrapping. If the
number of resamples is set as very close to the sample size, particularly with small sample sizes
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(lower than 100) and with samples containing outliers, Blindfolding performs similarly to
Jackknifing. With larger samples and with samples where the data points are evenly distributed
on a scatter plot, Blindfolding tends to performs more like Bootstrapping, especially when the
number of resamples is set as the same for both algorithms.

Prior to the development of the “stable” methods, a recommendation was usually made in
connection with Bootstrapping and Jackknifing. Since the warping algorithms are also sensitive
to the presence of outliers, the recommendation was to estimate P values with both
Bootstrapping and Jackknifing, which are complementary resampling methods, and use the P
values associated with the most stable coefficients. An indication of instability is a high P value
(i.e., statistically non-significant) associated with path coefficients that could be reasonably
expected to yield low P values. For example, with a sample size of 100, a path coefficient of 0.2
could be reasonably expected to yield a P value that is statistically significant at the 0.05 level. If
that is not the case, there may be a stability problem. Another indication of instability is a
marked difference between the P values estimated through Bootstrapping and Jackknifing.

The recommendation above was based on the fact that P values can be easily estimated using
two or more resampling methods by following the simple procedure outlined as follows. Run a
SEM analysis of the desired model, using one of the resampling methods, and save the project.
Then save the project again, this time with a different name, change the resampling method, and
run the SEM analysis again. Then save the second project again. Each project file will now have
results that refer to one of the resampling methods. The P values can then be compared, and the
most stable ones used in a research report on the SEM analysis. While this is a perfectly valid
approach for the calculation of P values, as the coefficients to which the P values refer do not
change across analyses, it is very important to fully disclose this to the readers of the research
report (or reports) written based on the SEM analyses.

An alternative to the above approach is the use one of the “stable” methods, particularly
the Stable3 method (see, e.g., Kock, 2014b; 2018b; Kock & Hadaya, 2018), as these methods
can be seen as yielding P values that are consistent with and often more precise than the P values
generated by the software’s other resampling methods. Using these “stable” methods has the
advantage of requiring much less manual work from the user. Based on various tests in the
context of PLS-based SEM, it seems that the Stable3 method yields fairly reliable results for path
coefficients associated with direct effects (Kock, 2014b; 2018b; Kock & Hadaya, 2018). It is less
clear if the Stable3 method, or any of the other “stable” methods, is advisable for the calculation
of P values for path coefficients associated with indirect and total effects, and research in this
area is ongoing.
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B.7. Individual inner model algorithm settings

The “View or change individual inner model algorithm settings” option allows users to set
inner model algorithms for individual paths (see Figure B.7). The algorithms available are the
same as those that can be selected as default inner model analysis algorithms: Linear, Warp2,
Warp?2 Basic, Warp3, and Warp3 Basic.

Figure B.7. View or change individual inner model algorithm settings
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Notes: do not forget to save your seftings, LN=Linear, W2=Warp2, W2b=Warp2 basic, W3=Warp3, W3b=Warp3 basic.

Individual inner model algorithms can be set for both regular and interaction effect latent
variables; the latter are associated with moderating effects. Since moderating effects themselves
incorporate nonlinearity, it is usually recommended that they be set here as “Linear”;
otherwise the nonlinearity inherent in moderation is captured by the nonlinear algorithm
chosen, in many cases rendering the moderating effect non-significant (Kock, 2021c; Kock &
Gaskins, 2016). If no choice is made for an individual inner model algorithm, the default inner
model analysis algorithm is used. If a model is changed after an analysis is conducted, the
individual inner model algorithms are set to the default inner model analysis algorithm.

This option allows users to customize their analyses based on theory and past empirical
research. If theory or results from past empirical research suggest that a specific link between
two latent variables is linear, then the corresponding path can be set to be analyzed using the
Linear algorithm. Conversely, if theory or results from past empirical research suggest that a
specific link between two latent variables should have the shape of a U curve (or J curve), the
corresponding path can be set to be analyzed using the Warp2 algorithm or the Warp2 Basic
algorithm. Kock et al. (2019) provide an example of explicit linear and nonlinear theorizing with
respect to different links in the same model, leading to linear and nonlinear relationships being
assessed simultaneously.
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B.8. Moderating effects settings

The “View or change moderating effects settings” option allows you to set the moderating
effects calculation option to be used by the software. You can choose among three options for
moderating effects calculation: Two Stages, Variable Orthogonalization, and Indicator
Products. The default moderating effects calculation option is Two Stages, whereby latent
variable scores are calculated first and then used in a second stage for the creation of the
interaction (or product) latent variable that implements the moderating effect. The Variable
Orthogonalization option implements a similar procedure, but stochastically departs from a
random variable, which is by definition fully orthogonal to all of the latent variables in the
model, for the creation of the interaction variable that implements the moderating effect. This is
done via a technique similar to the variation sharing method described by Kock (2019a), which is
the foundation of modern factor-based SEM algorithms that go from composites to factors
(Kock, 2023c). The Indicator Products option employs indicator products for the creation of
the interaction variable that implements the moderating effect, a classic approach used in PLS-
based SEM.

Unless a model is improperly specified, and the improper specification leads to severe biases,
the options Two Stages and Variable Orthogonalization should yield fairly similar results. An
example of a situation in which this would not occur would be a model that suffers from severe
endogeneity (Kock, 2022a), in which case the Variable Orthogonalization option may yield more
trustworthy results. These two options should also yield results similar to the Indicator Products
option when classic composite-based PLS algorithms are used. On the other hand, if factor-based
PLS algorithms are used, the results produced by the Indicator Products option should differ,
particularly if the number of indicators of the interaction variable that implements the
moderating effect is small (e.g., in the single digits). The reason for this is that the interaction
variable that implements the moderating effect is treated as a factor by factor-based PLS
algorithms.

If the Indicator Products option is used, the number of indicators of the interaction variable is
the product of the number of indicators of the moderating variable and the number of indicators
of the predictor variable in the link that is moderated. For example, if the number of indicators of
the moderating variable is 3, and the number of indicators of the predictor variable in the link
that is moderated is 4, then the number of indicators of the interaction variable is 12. When the
number of indicators of the interaction variable becomes large, then the reliability of the
corresponding true composite and factor converge. As this happens, the true composite and
factor also converge (Kock, 2019a). This is a variation of the phenomenon sometimes referred to
as “consistency at large” (Wold et al., 2001). This is why the results produced by the Indicator
Products option should differ from the results yielded by the other options, if: (a) the number of
indicators of the interaction variable that implements the moderating effect is small, and factor-
based PLS algorithms are used.

All of the above options apply to moderating effects that are explicitly included in the model.
Moderating effects involve moderating variables and moderating links; the latter occurring
between the moderating variables and direct links to which the variables point. Another test of
similar effects, which complements the above options, is the full latent growth test (also
implemented by this software, but via a different menu option). This test could be seen as a
comprehensive analysis of moderating effects where the moderating variable is “latent”, in the
sense that it does not “disrupt” the model in any way (Hubona & Belkhamza, 2021; Kock,
2020a). That is, in a full latent growth test, the moderating links are not explicitly included in the
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model, which makes its results similar to those of multi-group analyses where no sample
segmentation occurs (Kock, 2020a).

Of the options above, the one most likely to yield results similar to full latent growth (Kock,
2020a) is the Variable Orthogonalization option. The reason for this is that a latent variable that
is fully orthogonal to the other latent variables in the model would “not be seen” by those other
latent variables; i.e., it would not “disrupt” the model in any way. However, there is a key
difference between the Variable Orthogonalization option and full latent growth. The
Variable Orthogonalization option departs from a fully orthogonal variable, but this variable
ends up being correlated with the endogenous variable to which its interaction (or product) latent
variable points — unless the moderating effect is zero. Since the endogenous variable in question
is likely correlated with other latent variables in the model, then the interaction (or product)
latent variable also is correlated with those other latent variables.
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B.9. Missing data imputation settings

The “View or change missing data imputation settings” option allows you to set the missing
data imputation method to be used by the software, from among the following methods:
Arithmetic Mean Imputation (the software’s default), Multiple Regression Imputation,
Hierarchical Regression Imputation, Stochastic Multiple Regression Imputation, and Stochastic
Hierarchical Regression Imputation. Kock (2014c) and Kock (2018a) provide a detailed
discussion of these methods, as well as of a Monte Carlo simulation whereby the methods’
relative performances are investigated. The missing data imputation method chosen will be used
prior to execution of Step 3, and also after that when the option “Redo missing data
imputation (via data pre-processing)” under the “Modify” menu option is selected.

As noted above, a Monte Carlo simulation was conducted to assess the performance of five
missing data imputation methods implemented through this software: Arithmetic Mean
Imputation, Multiple Regression Imputation, Hierarchical Regression Imputation, Stochastic
Multiple Regression Imputation, and Stochastic Hierarchical Regression Imputation. The
detailed results are provided later in this document; see also: Kock (2014c) and Kock (2018a). In
summary, Multiple Regression Imputation yielded the least biased mean path coefficient
estimates, followed by Arithmetic Mean Imputation. When we look at mean loading estimates,
Arithmetic Mean Imputation yielded the least biased results, followed by Stochastic Hierarchical
Regression Imputation, and Hierarchical Regression Imputation.

Compared with the no missing data condition, none of the methods induced a reduction in
standard errors for path coefficients. This is noteworthy since prior results outside the context of
PLS-based SEM have tended to show a significant downward bias in standard errors, particularly
for non-stochastic missing data imputation varieties. Such downward bias in standard errors has
led to concerns regarding an inflation in type I errors, and warnings against the use of single
missing data imputation methods in general (Enders, 2010; Kock, 2014c; 2018a; Newman,
2014). Our results strongly suggest that such concerns may not be warranted in the context of
PLS-based SEM.
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B.10. Data modification settings

The “View or change data modification settings” option allows users to run their analyses
with sub-samples defined by a range restriction variable, which is chosen from among the
indicators available. (After Step 5 is completed, latent variable scores can also be added to the
model as standardized indicators.). This option also allows users to conduct their analyses with
only ranked data (see Figure B.10).

Figure B.10. View or change data modification settings
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Two range restriction variable types are available: standardized and unstandardized
indicators. This means that the range restriction variable can be either a standardized or
unstandardized indicator. Once a range restriction variable is selected, minimum and
maximum values must be set (i.e., a range), which in turn has the effect of restricting the
analysis to the rows in the dataset within that particular range.

The option of selecting a range restriction variable and respective range is useful in multi-
group analyses (Kock, 2014a) “done by hand”, as opposed to using the menu options “Explore
multi-group analyses” or “Explore full latent growth”. In a multi-group analysis “done by hand”
separate analyses are conducted for group-specific sub-samples, saved as different project files,
and the results then compared against one another. One example would be a multi-country
analysis, with each country being treated as a sub-sample, but without separate datasets for each
country having to be provided as inputs.

Let us assume that an unstandardized variable called “Country” stores the values “1” (for
Brazil), “2” (for New Zealand), and “3” (for the USA). To run the analysis only with data from
Brazil one can set the range restriction variable as “Country” (after setting its type as
“Unstandardized indicator”), and then set both the minimum and maximum values as “1” for the
range.

This range restriction feature is also useful in situations where outliers are causing instability
in a resample set, which can lead to abnormally high standard errors and thus inflated P values.
Users can remove outliers by restricting the values assumed by a variable to a range that
excludes the outliers, without having to modify and re-read a dataset.

Users can also select an option to conduct their analyses with only ranked data, whereby all
of the data is automatically ranked prior to the SEM analysis (the original data is retained in
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unranked format). When data measured on ratio scales is ranked, typically the value distances
that typify outliers are significantly reduced, effectively eliminating outliers without any
decrease in sample size. Contrary to popular belief, this cannot be achieved through
standardization alone.

Often some information is lost due to ranking — e.g., the distances among data points based on
answers on ratio scales. Thus a concomitant increase in collinearity may be observed, but
typically not to the point of threatening the credibility of the results. The option of using only
ranked data in the analysis can be very useful in assessments of whether the presence of outliers
significantly affects path coefficients and respective P values, especially when outliers are not
believed to be due to measurement error.
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B.11. Weight and loading starting value settings

The “View or change individual latent variable weight and loading starting value
settings” option allows users to set the initial values of the weights and loadings for each latent
variable (see Figure B.11). This is a specialized option that will only rarely be used. The default
starting value for all latent variables is 1. While any real number can be used here, normally only
-1 and 1 are used.

Figure B.11. View or change individual latent variable weight and loading starting value settings

Matu Perform Fluency |Fluency*Matu
1.00 1.00 1.00 1.00

Mote: do not forget to save your settings.

This option reflects a little-known characteristic of classic PLS-based SEM analyses, which is
that they do not always converge to the same solution. The estimated coefficients depend on the
starting values of weights and loadings, thus leading to different solutions depending on the
initial configurations of those starting values. Even in simple models, often at least two solutions
exist — as long as latent variables are used, with multiple indicators. By convention the solution
most often accepted as valid is the one associated with the default starting value for all latent
variables, which is 1.

With this option, latent variables measured in a reversed way can be more easily
operationalized. An example would be a latent variable reflecting boredom being measured
through a set of indicators that individually reflect excitement. In this type of scenario, generally
the starting value of weights and loadings for the latent variable should be set to -1.

This option can also be useful with formative latent variables for which most of the weights
and loadings end up being negative after an analysis is conducted. In this case, paths associated
with the latent variable may end up being reversed, leading to conclusions that are the opposite
of what is hypothesized. The solution here would normally be a change in sign for starting value
of weights and loadings, usually from 1 to -1.
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C. Step 1: Open or create a project file to save your work

In Step 1 you will open or create a project file to save your work (see Figure C.1). Project
files are saved with the “.prj” extension, and contain all of the elements needed to perform
a SEM analysis. That is, they contain the original data used in the analysis, as well as
information pertaining to the graphical model, the inner and outer model structures, and the
results.

Figure C.1. Step 1 window
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an existing project file.
Press the "Create project file" button when you are ready to create
a new project file.
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Once an original data file is read into a project file, the original data file can be deleted
without effect on the project file. The project file will store the original location and file name of
the data file so that this information is available in case it is needed in the future, but the project
file will no longer use the data file.

Project files may be created with one name, and then renamed using Windows Explorer or
another file management tool. Upon reading a project file that has been renamed in this fashion,
the software will detect that the original name is different from the file name, and will adjust
accordingly the name of the project file that it stores internally.

Different users of this software can easily exchange project files electronically if they are
collaborating on a SEM analysis project. This way they will have access to all of the original
data, intermediate data, and SEM analysis results in one single file. Project files are relatively
small. For example, a complete project file of a model containing 5 latent variables, 32 indicators
(columns in the original dataset), and 300 cases (rows in the original dataset) will typically be
only approximately 200 KB in size. Simpler models may be stored in project files as small as 50
KB.

If a project file created with a previous version of the software is open, the software
automatically recognizes that and converts the file to the new version. This takes placed even
with project files where all of the five steps of the SEM analysis were completed. However,
because each new version incorporates new features, with outputs stored within new or modified
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software objects, normally previous versions of the software cannot properly reuse project
files created with more recent versions.

65



WarpPLS User Manual: Version 8.0

D. Step 2: Read the raw data used in the SEM analysis

Through Step 2, you will read the raw data used in the SEM analysis (see Figure D.1). While
this should be a relatively trivial step, it is in fact one of the steps where users have the most
problems with other SEM software. Often a SEM software application will abort, or freeze, if the
raw data is not in the exact format required by the SEM software, or if there are any problems
with the data, such as missing values (empty cells).

Figure D.1. Reading the raw data used in the SEM analysis
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analysis.

Raw data can be read from a file or from the clipboard.
Read from file
If the source of the labels is a file, its type can be any of the
following:
xls or xIsx: An Excel file. Read from clipboard
.txt: A tab-delimited, or comma-delimited text file.

For Excel workbooks with multiple sheets, the sheet with the data Go back
must be either the first in the workbook or selected manually.

The file must have the names of the variables (latent construct
indicators) in the first row, and the values associated with those
variables in the following rows.

Press the "Read from file" button or the “"Read from clipboard™
button when you are ready to read the raw data.

Press the "Go back" button to go back to the main window.

For more help, click on the "Help"” menu option at the top of this
window.

The buttons “Read from file” and “Read from clipboard” allow you to read raw data into the
project file from a file or from the clipboard, respectively. This software employs an import
wizard that avoids most data reading problems, even if it does not entirely eliminate the
possibility that a problem will occur. Click only on the “Next” and “Finish” buttons of the file
import wizard, and let the wizard do the rest. Soon after the raw data is imported, it will be
shown on the screen, and you will be given the opportunity to accept or reject it. If there are
problems with the data, such as missing column names, simply click “No” when asked if the data
looks correct.

Raw data can be read directly from Excel files, with extensions “.xls” or “.xlsx”, or text files
where the data is tab-delimited or comma-delimited. When reading from an “.xls” or “.xlsx”
file that contains a workbook with multiple worksheets, make sure that the worksheet that
contains the data is the first on the workbook. If the workbook has multiple worksheets, the
file import wizard used in Step 2 will typically select the first worksheet as the source or raw
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data. If the desired worksheet is not the first in the workbook, in many cases the user will be able
to select the proper worksheet through the wizard, but this selection can lead to mistakes when
made by novice users. Raw data files, whether Excel or text files, must have indicator names
in the first row, and numeric data in the following rows. They may contain empty cells, or
missing values; these will be automatically replaced with values calculated by one of the missing
data imputation algorithms available in a later step.

The “View or change missing data imputation settings” option under “Settings” allows you
to set the missing data imputation method to be used by the software in the next step. Users may
want to employ non-automated approaches to deal with missing data, such as deleting the rows
with missing cells, or manually replacing them with the average of nearby values on the same
column. The most widely used approach, and also a reasonably reliable one in the context of
PLS-based SEM, is replacing the missing values with column averages. This missing data
imputation method is called “Arithmetic Mean Imputation”, and is automated by the software. It
is in fact the software’s default missing data imputation method. Kock (2014c) and Kock (2018a)
provide a detailed discussion of various missing data imputation methods, as well as of a Monte
Carlo simulation whereby the methods’ relative performances are investigated.

While missing data imputation is done automatically by the software, you should not use
datasets with too many missing values, as this will distort the results. A general rule of thumb is
that your dataset should not have any column with more than 10 percent of its values missing; a
more relaxed rule would be to set the threshold to 20 percent (Hair et al., 1987; 2009). On the
other hand, Kock (2014c) and Kock (2018a) show that even 30 percent of missing data will
still not lead to significant bias (from the perspective of theory testing) with any of the
missing data imputation methods employed by this software. One can reduce the percentage
of missing values per column by deleting rows in the dataset, where the deleted rows are the ones
that refer to the columns with missing values.

One simple test can be used to try to find out if there are problems with a raw data file. Try to
open it with a spreadsheet software program (e.g., Excel), if it is originally a text file; or try to
create a tab-delimited text file with it, if it is originally a spreadsheet file. If you try to do either
of these things, and the data looks corrupted (e.g., missing column names, misplaced columns,
cells containing unrecognized symbols etc.), then it is likely that the original file has problems,
which may be hidden from view. For example, a spreadsheet file may be corrupted, but that may
not be evident based on a simple visual inspection of the contents of the file.

Common sources of problems are data files where variables storing numeric data are
mixed in with data label variables. (The latter are often called “categorical variables”, and
store text or alphanumeric data). Users should make sure that numeric data is separated from text
or alphanumeric data, and also separately read into the software. The latter (i.e., text or
alphanumeric data) can be read into data label variables, but certain precautions must be
taken. Check the discussion in connection with the “Modify” menu option for more details; the
“Modify” menu option is available from the software’s main window. When reading numeric
data into the software, column names (i.e., headings) must not be numeric; in these cases,
column names must be text or alphanumeric.
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E. Step 3: Pre-process the data for the SEM analysis

In Step 3 the raw data will be pre-processed for the SEM analysis. This is mostly an automatic
process, requiring only a few button clicks from you. This step will correct problems with the
data, such as: identical column names, columns with zero variance, and missing data.

The “View or change missing data imputation settings” option allows you to set the missing
data imputation method to be used by the software in this step. Missing data imputation can be
redone after this step, if you later decide to use a different imputation method. To accomplish
that you should use the option “Redo missing data imputation (via data pre-processing)’” under
the “Modify” menu option. Kock (2014c) and Kock (2018a) provide a detailed discussion of
missing data imputation methods, as well as of a Monte Carlo simulation comparing the
methods’ relative performances.

This step will also let you know if the data has rank problems, which usually happens when
the sample size is very small relative to the number of existing indicators. A related cause of rank
problems is a sample with many repeated or linearly dependent values on different rows or
columns, which sometimes is an indication of data fabrication. Please note that the term “rank”
here comes from matrix algebra, and is unrelated to the same term used in the context of ranked
data, as discussed earlier in connection with the software settings.

If there are rank problems, this does not mean that you cannot proceed with the SEM analysis.
However, the results may be unstable and, in some cases, completely unreliable. On the other
hand, it is not uncommon for rank problems to be reported and still the results of the ensuing
SEM analysis turn out to be reliable. This is due to the general robustness methods for SEM
analysis implemented by this software.

At the end of this step, a window will be displayed with the pre-processed data, which will be
standardized. Standardized data columns have means that equal zero and standard
deviations that equal one. If you use the Arithmetic Mean Imputation method for dealing with
missing data (the software’s default), previously missing values will be shown as zero, since they
were replaced with the averages (or means) of the columns. Standardized data usually ranges
from -4 to 4, with outliers assuming values toward the left or right end of those extremes,
sometimes beyond -4 or 4.

Outliers can significantly change the shape of a nonlinear relationship, but this may also be the
case with linear relationships. For example, one single outlier may change the sign of a linear
association, from positive to negative (i.e., changing the relationship from direct to inverse).
Because of this, there is invariably the temptation of removing outliers from analyses. This is
often a mistake (Giaquinta, 2009; Hair et al., 2009; Kock, 2016a), as outliers can be invaluable in
elucidating the true nature of an association (Kaiser, 2010; Kock, 2011b; Rosenthal & Rosnow,
1991; Wold et al., 2001). Generally speaking, outliers should only be removed if there are good
reasons to believe that they are due to measurement error.

After the software displays the pre-processed and standardized data, typically you will accept
the data and move on to the next step. If the data looks corrupted, do not accept it; click on the
“No” button when asked if the data looks correct. If there are problems in this step, they will
usually be related to problems with the raw data file. Check that file, and see if you can correct
those problems.

As mentioned before in this manual, one simple test can be used to try to find out if there are
problems with a raw data file. Try to open it with a spreadsheet program, if it is originally a text
file; or to try to create a tab-delimited text file with it, if it is originally a spreadsheet file. If you
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try to do either of these things, and the data looks “messed up” (e.g., corrupted, or missing
column names), then it is likely that the original file has problems, which may be hidden from
view. For example, a spreadsheet file may be corrupted, but that may not be evident based on a
simple visual inspection of the contents of the file using spreadsheet software.
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F. Step 4: Define the variables and links in the SEM model

In Step 4 you will define the latent variables and links in the SEM model. The sub-steps that
make up this step are discussed in more detail in the subsections below. This software employs
graphical interface that allows users to create and edit model elements visually and directly; i.e
without the need of a scripting language.

You will define the latent variables by selecting the indicators that are associated with them,
and the measurement method used — either formative or reflective. The process of defining the
latent variables in a SEM model in this fashion is often called “defining the outer model”, in
SEM lingo.

Model links can be of two types, direct and moderating links. Direct links connect pairs of
latent variables. Moderating links connect latent variables and direct links; that is, they refer to
effects in which a latent variable moderates the relationship between a pair of latent variables.
The process of defining model links is often referred to as “defining the inner model”.

a
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F.1. Create or edit SEM model

The window used to create or edit a model is shown in Figure F.1. A model can be edited if it
has been created and saved before as part of a project. While editing or creating a model you can
choose from a number of menu options related to overall model functions, latent variable
functions, direct link functions, and moderating link functions. As with other windows in this
software, there is a help menu option that provides access to this manual, displayed as a PDF file.
The help menu option also provides links to Web resources.

Figure F.1. Create or edit the SEM model window

Save model and dose

St Mocel g Create latent variable

Show fhide indicators Edit latent variable Create direct link Create moderating link
Clear model (deletes all latent variables) Delete latent variable Delete direct link Delete moderating link
Cancel model creation/editing (all editing is lost) Move latent variable Delete all direct links Delete all moderating links

Save model into .jpg file

Model options Latentvariable"lbptions Directlinkoﬁiions Moderating Iinkoﬁ{ions Help

Choose one of the menu options above to perform a task.
(You should start by creating latent variables, using the latent variable menu options. You can then drag
links among them.)

A guiding text box is shown at the top of the model editing and creation window. The content
of this guiding text box changes depending on the menu option you choose, guiding you through
the sub-steps related to each option. For example, if you choose the option “Create latent
variable”, the guiding text box will change color, and tell you to select a location for the latent
variable on the model graph.

Direct links are displayed as full arrows in the model graph, and moderating links as
dashed arrows. Each latent variable is displayed in the model graph within an oval symbol,
where its name is shown above a combination of alphanumerical characters with this general
format: “(F)161”. The “F” refers to the measurement model; where “F” means formative, and
“R” reflective. The “16i” reflects the number of indicators of the latent variable, which in this
case is 16.

Save model and close. This option saves the model within the project, and closes the model
editing and creation window. This option does not, however, save the project file. That is, the
project file has to be saved for a model to be saved as part of it. This allows you to open a project
file, change its model, run a SEM analysis, and discard all that you have done, if you wish to do
S0, reverting back to the previous project file.

Centralize model graph. This option centralizes the model graph, and is useful when you are
building complex models and, in the process of doing so, end up making the model visually
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unbalanced. For example, you may move variables around so that they are all accidentally
concentrated on the left part of the screen. This option corrects that by automatically redrawing
all symbols in the model graph so that the center of the model graph coincides with the center of
the model screen.

Show/hide indicators. This option shows or hides the list of indicators for each latent
variable. The indicators are shown on a vertical list next to each latent variable, and without the
little boxes that are usually shown in other SEM software. This display option is used to give the
model graph a cleaner look. It also has the advantage that it saves space in the model graph for
latent variables. Normally you will want to keep the indicators hidden, except when you are
checking whether the right indicators were selected for the right latent variables. That is,
normally you will show the indicators to perform a check, and then hide them during most of the
model building process.

Clear model (deletes all latent variables). This option deletes all latent variables, essentially
“clearing” the model. Given that choosing this option by mistake can potentially cause some
serious loss of work (not to mention some major user aggravation), the software shows a dialog
box asking you to confirm that you want to clear the model before it goes ahead and deletes all
latent variables. Even if you choose this option by mistake, and confirm your choice also by
mistake (a double mistake), you can still undo it by choosing the option “Cancel model
creation/editing (all editing is lost)” immediately after clearing the model.

Cancel model creation/editing (all editing is lost). This option cancels the model creation or
editing, essentially undoing all of the model changes you have made.

Save model into .jpg file. This option allows you to save the model graph into a .jpg file. You
will be asked to select the file name and the folder where the file will be saved. After saved, this
file can then be viewed and edited with standard picture viewers, as well as included as a picture
into reports in other files (e.g., a Word file). Users can also generate model graph files by
copying the model screen into a picture-editing application (e.g., Paint), cropping it to leave out
unnecessary or unneeded areas, saving it into a picture file (e.g., .jpg or .png), and then importing
that file into reports.

Create latent variable. This option allows you to create a latent variable, and is discussed in
more detail below. Once a latent variable is created it can be dragged and dropped anywhere
within the window that contains the model.

Edit latent variable. This option allows you to edit a latent variable that has already been
created, and thus that is visible on the model graph.

Delete latent variable. This option allows you to delete an existing latent variable. All links
associated with the latent variable are also deleted.

Move latent variable. This option is rarely used since, once a latent variable is created, it can
be easily dragged and dropped with the pointing device (e.g., mouse) anywhere within the
window that contains the model. This option is a carryover from a previous version, maintained
for consistency and for those users who still want to use it. It allows a user to move a latent
variable across the model by first clicking on the variable and then on the destination position.

Create direct link. This option allows you to create a direct link between one latent variable
and another. The arrow representing the link points from the predictor latent variable to the
criterion latent variable. Direct links are usually associated with direct cause-effect hypotheses;
testing a direct link’s strength (through the calculation of a path coefficient) and statistical
significance (through the calculation of a P value) is equivalent to testing a direct cause-effect
hypothesis.

72



WarpPLS User Manual: Version 8.0

Delete direct link. This option allows you to delete an existing direct link. You will click on
the direct link that you want to delete, after which the link will be deleted.

Delete all direct links. This option deletes all direct links. Given that choosing this option by
mistake is a possibility, the software shows a dialog box asking you to confirm that you want to
execute it before it proceeds. Even if you choose this option by mistake, and confirm your choice
also by mistake, you can still undo it by choosing the option “Cancel model creation/editing (all
editing is lost)”.

Create moderating link. This option allows you to create a link between a latent variable and
a direct link. With some exceptions, both formative and reflective latent variables can be part of
moderating links. Arguably this is not possible with the PLS modes M, A and B (see Lohmoller,
1989; Kock & Mayfield, 2015), which are usually the ones implemented through other PLS-
based SEM software tools. Moderating links are typically associated with moderating cause-
effect hypotheses, or interaction effect hypotheses. Testing a moderating link’s strength (through
the calculation of a path coefficient) and statistical significance (through the calculation of a P
value) is equivalent to testing a moderating cause-effect or interaction effect hypothesis.
Moderating links should be used with moderation (no pun intended), because they may
introduce multicollinearity into the model, and also because they tend to add nonlinearity to the
model. By introducing multicollinearity into the model they may make some model parameter
estimates unstable and biased.

By using the menu option “Explore full latent growth” users can completely avoid the above
problems. This menu option is available from the main software window, and allows you to
estimate the effects of a latent variable or indicator on all of the links in a model (all at once),
without actually including any links between the variable and other variables in the model. A full
latent growth analysis could be seen as a comprehensive analysis of moderating effects where the
moderating variable is “latent”, in the sense that it does not “disrupt” the model in any way
(Hubona & Belkhamza, 2021; Kock, 2020a).

Delete moderating link. This option allows you to delete an existing moderating link. You
will click on the moderating link that you want to delete, after which the link will be deleted.

Delete all moderating links. This option deletes all moderating links. Given that choosing
this option by mistake is a possibility, the software shows a dialog box asking you to confirm
that you want to execute it before it proceeds. Even if you choose this option by mistake, and
confirm your choice also by mistake, you can still undo it by choosing the option “Cancel model
creation/editing (all editing is lost)”.

After you create a model and choose the option “Save model and close” a wait bar will be
displayed on the screen telling you that the SEM model structure is being created. This is an
important sub-step where a number of checks are made. In this sub-step, if there are any
moderating links in the model, new latent variables are created to store information about those
moderating effects. You can choose among three options for moderating effects calculation (via
a different menu option): Two Stages, Variable Orthogonalization, and Indicator Products. The
default moderating effects calculation option is Two Stages, whereby latent variable scores are
calculated first and then used in a second stage for the creation of the interaction (or product)
latent variable that implements the moderating effect.

The Indicator Products option uses a product-indicator procedure described and validated by
Chin et al. (2003). If this option is employed, the more moderating links a model has, the longer
the model structure creation sub-step will take. In models where only reflective variables are
involved in a moderating link, typically this sub-step will not take longer than a few seconds.
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Moderating links with formative variables may lead to longer wait times, because formative
variables are usually more complex, frequently with significantly more indicators than reflective
variables.

As noted above, instead of the product-indicator approach described by Chin et al. (2003), one
can use an alternative approach (via the Two Stages option). This two-stage approach can also be
implemented manually, which might be time-consuming. In the first stage of the manual
implementation of this alternative approach, the latent variables that are part of a moderating
relationship will be added to the model as new indicators. This can be done via the options “Add
one or more latent variable (a.k.a. factor) scores as new standardized indicators” or “Add all
latent variable (a.k.a. factor) scores as new standardized indicators”, which are available under
the “Modify”” menu options. In the second stage, the new one-indicator latent variables will be
used in the definition of a moderating relationship.

Yet another alternative is to conduct a full latent growth analysis (Hubona & Belkhamza,
2021; Kock, 2020a). As noted above, users can do this by using the menu option “Explore full
latent growth”. The “Explore full latent growth” menu option is available from the main
software window, and allows you to estimate the effects of a latent variable or indicator on all of
the links in a model (all at once), without actually including any links between the variable and
other variables in the model. A full latent growth analysis could be seen as a comprehensive
analysis of moderating effects where the moderating variable is “latent”, in the sense that it does
not “disrupt” the model in any way (Hubona & Belkhamza, 2021; Kock, 2020a).
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F.2. Create or edit latent variable

The latent variable creation window is show in Figure F.2, and it is virtually identical to the
latent variable editing window. The latent variable will appear in the model graph as soon as you
click on the menu option under “Save”, which saves the latent variable and closes the latent
variable creation or editing window. A latent variable is not saved as part of a project until the
model is saved as part of the project and the project file is saved.

Figure F.2. Create latent variable window

Save Close Help
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Remove |

Measurement model:

@ Reflective Formative

You create a latent variable by entering a name for it, which must have no more than 8
characters, but to which not many other restrictions apply. The latent variable name may contain
letters, numbers, and even special characters such as “@” or “$”. It cannot contain the special
symbols “*” or “:”, however, because these symbols are used later by this software in selected
outputs to indicate certain conditions (e.g., that a latent variable is associated with a moderating
effect). After entering a name for a latent variable, you then select the indicators that make up the
latent variable, and define the measurement model as reflective or formative.

A reflective latent variable is one in which all the indicators are expected to be highly
correlated with one another, and with the latent variable itself (Kock & Mayfield, 2015). For
example, the answers to certain question-statements by a group of people, measured ona 1 to 7
scale (1=strongly disagree; 7=strongly agree) and answered after a meal, are expected to be
highly correlated with the latent variable “satisfaction with a meal”. Among question-statements
that would arguably fit this definition are the following two: “T am satisfied with this meal”, and
“After this meal, I feel full”. Therefore, the latent variable “satisfaction with a meal”, can be said
to be reflectively measured through two indicators. Those indicators store answers to the two
question-statements. This latent variable could be represented in a model graph as “Satisf”, and
the indicators as “Satisf1”” and “Satisf2”. Notwithstanding this simplified example, users should
strive to have more than two indicators per latent variable; the more indicators, the better, since
the number of indicators is inversely related to the amount of measurement error (Kock, 2015b;
Nunnally, 1978; Nunnally & Bernstein, 1994).

A formative latent variable is one in which the indicators are expected to measure certain
attributes of the latent variable, but the indicators are not expected to be highly correlated with
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the latent variable itself, because they (i.e., the indicators) are not expected to be highly
correlated with one another (Kock & Mayfield, 2015). For example, let us assume that the latent
variable “Satisf” (“satisfaction with a meal”) is now measured using the two following question-
statements: “I am satisfied with the main course” and “I am satisfied with the dessert”. Here, the
meal comprises the main course, say, filet mignon; and a dessert, such as a fruit salad. Both main
course and dessert make up the meal (i.e., they are part of the same meal) but their satisfaction
indicators are not expected to be highly correlated with each other. The reason is that some
people may like the main course very much, and not like the dessert. Conversely, other people
may be vegetarians and hate the main course, but may like the dessert very much.

If the indicators are not expected to be highly correlated with one another, they cannot be
expected to be highly correlated with their latent variable’s score. Here is a general rule of thumb
that can be used to decide if a latent variable is reflectively or formatively measured. If the
indicators are expected to be highly correlated, and are redundant in their meaning, then the
measurement model should be set as reflective. If the indicators are not expected to be highly
correlated, and are clearly not redundant in meaning (they measure different facets of the same
construct), even though they clearly refer to the same latent variable, then the measurement
model should be set as formative.

Setting a latent variable as formative or reflective affects the calculation of model parameters
only with the PLS Mode B algorithm, or with algorithms that employ the PLS Mode B algorithm
or variations of it (e.g., PLS Mode B Basic, PLS Mode M). With other algorithms, setting a
latent variable as formative or reflective is still recommended, as it helps the user interpret
outputs and conduct certain assessments (e.g., validity assessments, discussed later in this
manual).

Formative measurement has been facing increasing criticism, particularly since the late 1990s
(Kock & Mayfield, 2015). See Edwards (2011) for a particularly critical and cogent discussion.
Given this growing criticism, it is recommended that the Cronbach’s alpha coefficients
associated with formative latent variables be equal to or greater than 0.6, for reasons related to
measurement error theory (Kock, 2015b; Nunnally, 1978; Nunnally & Bernstein, 1994). Since
loadings tend to be relatively low with formative latent variables (and weights relatively high),
reliability measures (such as the Cronbach’s alpha coefficient) tend to also be relatively low.
Nevertheless, Cronbach’s alpha coefficients equal to or greater than 0.6 can be achieved by
increasing the number of indicators used in formative measurement (Kock & Mayfield, 2015).
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G. Step 5: Perform the SEM analysis and view the results

Step 5 performs the SEM analysis based on the model created in Step 4. After you click on the
button to perform the SEM analysis, the software will show a wait bar. This wait bar will update
you on the progress of the SEM analysis, which usually will take only a few seconds or less for
simple to moderately complex models. As soon as the SEM analysis is completed, the software
will show the results in graphical format on a window. That window also has menu options that
allow you to view more details about the results, including some that are not shown on the graph
(e.g., reliability measures), and also save the results into tab-delimited text files.

Collinearity is estimated before the SEM analysis is run. If collinearity appears to be too
high, users are warned about it. A table with estimated latent variable correlations is shown,
allowing users to identify the possible offending latent variables. If users so choose, they can
proceed with the analysis anyway, but in most (not all) cases the full collinearity (a.k.a.
multicollinearity) measures will confirm that collinearity is too high in their models for the
analysis results to be considered credible.

Measurement error and composite weights are estimated before the SEM analysis is run,
whenever factor-based PLS algorithms are used. Measurement error and composite weights play
a key role in these algorithms. If at least one measurement error weight is greater than the
corresponding composite weight, the user is warned about possible unreliability of results. This
happens usually when at least one of the Cronbach’s alpha coefficients associated with the latent
variables is lower than 0.5. Foundational aspects of the factor-based PLS algorithms are
discussed by Kock (2015b; 2019a; 2019b; 2019c¢; 2023c), and demonstrated empirically by Kock
(2017; 2019a; 2019b; 2019c). Kock (2015b; 2019b) briefly lays out the mathematical basis of
these algorithms, from which the importance of measurement error and composite weights can
be gleaned.

New options become available from the main window after Step 5 is completed, under the
“Modify” menu option. These options allow users to add one or more latent variable scores to
the model as new standardized indicators, and also to add all latent variable scores as new
indicators. Adding one or more latent variable scores at a time may be advisable in certain cases,
such as in hierarchical analyses using selected latent variable scores as indicators at each level. In
these cases, adding all latent variable scores at once may soon clutter the set of indicators
available to be used in the SEM model.

The option of adding latent variable scores to the model as new standardized indicators is
useful in the removal of outliers, through the use of restricted ranges for latent variable scores,
particularly for outliers that are clearly visible on the plots depicting associations among latent
variables. As briefly mentioned earlier, this option is also useful in hierarchical analyses, where
users define second-order (and higher order) latent variables, and then conduct analyses with
different models including latent variables of different orders.

New options become available from the main window after Step 5 is completed, under the
“Explore” menu option, in addition to the option allowing users to estimate statistical power and
minimum sample size requirements (available before Step 5). These options allow users to view
T ratios and confidence intervals for various coefficients, estimate complex probabilities via
conditional probabilistic queries, conduct full latent growth analyses (Kock, 2020a), conduct
multi-group and measurement invariance analyses, create analytic composites (Kock, 2021a;
Kock et al., 2018) and instrumental variables that can be used to address endogeneity (Kock,
2022a) and analyze reciprocal relationships (Kock, 2023a), perform numeric-to-categorical and

77



WarpPLS User Manual: Version 8.0

categorical-to-numeric conversions, view Dijkstra's consistent PLS outputs, view fit indices
comparing indicator correlation matrices (shown together with other classic model fit and quality
indices), and view new reliability measures generated in the context of factor-based PLS
analyses (Kock, 2017; 2019a; 2019b; 2019c; 2020c; 2023c). These menu options are discussed
individually below.

This software uses algorithms that are fairly computing intensive, in some cases employing
multiple checks and optimization sub-algorithms in each sub-step. Therefore the speed with
which the analysis is conducted may be a little slower than that of some other publicly available
SEM software. The differences in speed are not significant though, and normally the results
generated by this software are more complete, and in many cases more reliable. For example,
this software calculates model fit and quality indices, as well as P values for most of its
parameter estimates. Publicly available PLS-based SEM software usually do not provide those
measures.

Some model elements may reduce the speed of the SEM analysis more than others. These
are: formative latent variables with many indicators and, more generally, latent variables with
many indicators (even if they are reflective); moderating effects, particularly if they are
associated with latent variables aggregating many indicators; setting the number of resamples for
Bootstrapping or Blindfolding as 200 or higher; and using Jackknifing as the resampling method,
if the sample size is larger than 200.

In Jackknifing, the number of resamples equals the sample size, which is why using
Jackknifing as the resample method may reduce the speed of the SEM analysis with relatively
large samples. Generating resamples and running calculations on them is one of the most
computing intensive sub-steps of the SEM analysis. However, Jackknifing often produces more
stable parameter estimates with warped analysis. So there is a tradeoff between speed and
reliability when warping algorithms are being used. This tradeoff may tip the balance in favor of
using Jackknifing, alone or in addition to Bootstrapping or Blindfolding, even if the user has to
wait longer for the results.

An alternative is the use of the “stable” quasi-parametric methods: Stablel, Stable2, and
Stable3. This alternative is highly recommended, particularly with the Stable3 method, the
software’s default. As their name implies, these methods yield stable coefficients. They also
provide fairly accurate estimates of standard errors, which are used in the calculation of P values.
These methods do not actually generates resamples, so calling them resampling methods is done
here for simplicity in the grouping of settings options. Because no resamples are generated, these
are rather efficient methods from a computing load perspective. These methods can be
particularly useful in the analysis of large datasets, as in these cases creating resamples can be
computationally very taxing. With the emergence of the concept of “big data”, the need to
analyze large datasets is becoming increasingly common.
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H. View and save results

As soon as the SEM analysis is completed, the software shows the results in graphical format
on a window, which also contains a number of menu options that allow you to view and save
more detailed results (see Figure H.1.1). The graph with the results shows path coefficients,
respective P values, and R-squared coefficients. Users can also show or hide indicators weights,
loadings and names.

Figure H.1.1. View and save results window

View Show Save Close Help
.\
SEM anaIySIs completed The main results are shown in the graph below. You can now view and save
g - the View or Save menu options above to do so.

Show Save Close Help

! Show/hide indicator weights, loadings and names || Save Close Help

! Save all classic model estimates into a tab-delimited .txt file
View ] Save Close Help Save correlations among indicators into a tab-delimited .txt file

View general results Save latent variable (a.k.a. factor) scores into a tab-delimited .txt file

View path coefficients and P values Save model into jpg file

View standard errors and effect sizes for path coefficients
View indicator loadings and cross-loadings »

View indicator weights

View latent variable coefficients
View correlations among latent variables and errors 4

View block variance inflation factors Sicooss
View correlations among indicators (R)3i

View/plot linear and nonlinear relationships among latent variables R2=0.37

View indirect and total effects >

View causality assessment coefficients 4

The “Save” menu options allow users to save most of the results that they can view, with the
majority of those results saved under the option to save all classic model estimates into a tab-
delimited text file. Additionally, users can save the factor scores calculated for each latent
variable. These can be useful in some specialized applications; e.g., users may want to generate
customized graphs based on those scores.

Just to be clear, the “factor” scores are the latent variable scores; even though classic PLS
algorithms approximate latent variables though composites, not factors. This is generally
perceived as a limitation of classic PLS algorithms (Kock, 2015a; 2015b; 2017; 2019a; 2019b;
2019c), which is addressed through the factor-based PLS algorithms offered by this software
(Kock, 2017; 2019a; 2019b; 2019c; 2023c). The latter, factor-based PLS algorithms, estimate
latent variables through the estimation of the true factors. The term “factor” is often used when
we refer to latent variables, in the broader context of SEM analyses in general. The reason is that
factor analysis, from which the term “factor” originates, can be seen as a special case of SEM
analysis.

The path coefficients are noted as beta coefficients. “Beta coefficient” is another term often
used to refer to path coefficients in PLS-based SEM analyses; this term is commonly used in
multiple regression analyses as well. The P values are displayed below the path coefficients,
within parentheses. The R-squared coefficients are shown below each endogenous latent variable
(i.e., a latent variable that is hypothesized to be affected by one or more other latent variables),
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and reflect the percentage of the variance in the latent variable that is explained by the latent
variables that are hypothesized to affect it. To facilitate the visualization of the results, the path
coefficients and P values for moderating effects are shown in a way similar to the corresponding
values for direct effects, namely next to the arrows representing the effects.
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H.1. View general results

General SEM analysis results include: the version of WarpPLS used in the SEM analysis;
project file details, such as the project file name and when the file was last saved; model fit and
quality indices (shown in Figure H.1.2), which are discussed in more detail below; and general
model elements, such as the algorithm and resampling method used in the SEM analysis.

Figure H.1.2. General results window

Model fit and quality indices

Average path coefficient (APC)=0.196, P<0.001

Average R-squared (ARS)=0.169, P<0.001

Average adjusted R-squared (AARS)=0.164, P<0.001

Average block VIF (AVIF)=1.361, acceptable if <= 5, ideally <= 3.3

Average full collinearity VIF (AFVIF)=1.571, acceptable if <= 5, ideally <= 3.3
Tenenhaus GoF (GoF)=0.292, small >= 0.1, medium >=0.25, large >=0.36
Sympson's paradox ratio (SPR)=1.000, acceptable if >= 0.7, ideally = 1

R-squared contribution ratio (RSCR)=1.000, acceptable if >= 0.9, ideally =1
Statistical suppression ratio (SSR)=1.000, acceptable if >= 0.7

MNonlinear bivariate causality direction ratio (NLBCDR)=0.861, acceptable if >= 0.7

Under the project file details, both the raw data path and file are provided. Those are provided
for completeness, because once the raw data is imported into a project file, it is no longer needed
for the analysis. Once a raw data file is read, it can even be deleted without any effect on the
project file, or the SEM analysis.

Ten global model fit and quality indices are provided (Kock, 2010; 2014a; 2015d): average
path coefficient (APC), average R-squared (ARS), average adjusted R-squared (AARS),
average block variance inflation factor (AVIF), average full collinearity VIF (AFVIF),
Tenenhaus GoF (GoF), Simpson's paradox ratio (SPR), R-squared contribution ratio
(RSCR), statistical suppression ratio (SSR), and nonlinear bivariate causality direction
ratio (NLBCDR).

Additional model fit and quality indices are available under the menu option “Explore
additional coefficients and indices”, which is itself under the “Explore” menu option that is
available from the main software window. These additional indices allow investigators to assess
the fit between the model-implied and empirical indicator correlation matrices (Kock, 2020c).

For the APC, ARS, and AARS, P values are also provided. These P values are calculated
through a process that involves resampling estimations coupled with corrections to counter the
standard error compression effect associated with adding random variables, in a way analogous
to Bonferroni corrections (Kock, 2011c; 2014a; Rosenthal & Rosnow, 1991). This is necessary
since the model fit and quality indices are calculated as averages of other parameters.

The interpretation of the model fit and quality indices depends on the goal of the SEM
analysis. If the goal is to only test hypotheses, where each arrow represents a hypothesis, then the
model fit and quality indices are, as a whole, of less importance. However, if the goal is to find
out whether one model has a better fit with the original data than another, then the model fit and
quality indices are a useful set of measures related to model quality. When assessing the model
fit with the data, several criteria are recommended. These criteria are discussed below, together
with the discussion of the model fit and quality indices.

APC, ARS and AARS. Typically the addition of new latent variables into a model will
increase the ARS, even if those latent variables are weakly associated with the existing latent
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variables in the model. However, that will generally lead to a decrease in the APC, since the path
coefficients associated with the new latent variables will be low. (Here it is important to note that
the APC is calculated based on the absolute values of the path coefficients.) Thus, the APC and
ARS will counterbalance each other (Kock, 2010; 2011c), and will only increase together if the
latent variables that are added to the model enhance the overall predictive and explanatory
quality of the model. The AARS is generally lower than the ARS for a given model (see, e.g.,
Kock, 2015d). The reason is that it averages adjusted R-squared coefficients (Theil, 1958;
Wooldridge, 1991), which themselves correct for spurious increases in R-squared coefficients
due to predictors that add no explanatory value in each latent variable block. It is recommended
that the P values for the APC, ARS and AARS all be equal to or lower than 0.05; that is,
significant at the 0.05 level (Kock, 2011c). A more relaxed rule would be that the P values for
the APC and ARS only be equal to or lower than 0.05.

AVIF and AFVIF. The AVIF index will increase if new latent variables are added to the
model in such a way as to add vertical collinearity in the model’s latent variable blocks. The
AFVIF index will increase if new latent variables are added to the model in such a way as to add
full collinearity into the model (i.e., either vertical or lateral collinearity; see Kock & Lynn,
2012). Full collinearity is often referred to as “muticollinearity”. High AVIF and AFVIF values
may result from the inclusion of new latent variables that overlap in meaning with existing latent
variables (Kock, 2021a). It is generally undesirable to have different latent variables in the same
model that measure the same underlying construct; those should be combined into one single
latent variable. Thus, the AVIF and AFVIF indices bring in new dimensions that add to a
comprehensive assessment of a model’s overall predictive and explanatory quality. Because of
the way in which these indices are calculated (for more details, see: Kock & Lynn, 2012), the
AFVIF is not sensitive to variations in collinearity due to the use of nonlinear algorithms. The
AVIF, on the other hand, is sensitive to the use of nonlinear algorithms. Therefore it is
recommended that both indices, AVIF and AFVIF, be reported in studies, as they are not
redundant indices. It is recommended (ideally) that both the AVIF and AFVIF be equal to or
lower than 3.3, particularly in models where most of the variables are measured through
two or more indicators. A more relaxed (acceptable) criterion is that both indices be equal to
or lower than 5, particularly in models where most variables are single-indicator variables
(and thus not “true” latent variables). The reason for these differences in criteria in different
contexts is that PLS-based SEM algorithms in general tend to be particularly effective at
reducing collinearity (Kock, 2021a; Kock & Lynn, 2012), but only if multiple indicators are
available to be aggregated in the calculation of latent variable scores.

GoF. Similarly to the ARS, the GoF index, referred to as “Tenenhaus GoF” in honor of
Michel Tenenhaus, is a measure of a model’s explanatory power (See, e.g., Kock, 2015d).
Tenenhaus et al. (2005) defined the GoF as the square root of the product between what they
refer to as the average communality index and the ARS. The communality index for a given
latent variable is defined as the sum of the squared loadings for that latent variable, each loading
associated with an indicator, divided by the number of indicators. The average communality
index for a model is defined similarly, and takes all latent variables into account in its
calculation. The loadings referred to here are the unrotated loadings, which are available from
the structure loadings and cross-loadings table. It is also worth noting that the definition of the
communality index used by Tenenhaus et al. (2005) does not match the typical definition of
communality, at least as it is normally stated in the context of factor analysis. As noted by
Wetzels et al. (2009), the average variance extracted (AVE) for each latent variable equals the
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corresponding communality index. Wetzels et al. (2009) also proposed the following thresholds
for the GoF: small if equal to or greater than 0.1, medium if equal to or greater than 0.25,
and large if equal to or greater than 0.36. They did so by assuming a minimum acceptable
average AVE of 0.5, and using Cohen’s (1988) thresholds for small, medium, and large effect
sizes. A value lower than 0.1 for the GoF suggests that the explanatory power of a model may be
too low to be considered acceptable.

SPR. The SPR index is a measure of the extent to which a model is free from Simpson’s
paradox instances (Kock, 2015e; Kock & Gaskins, 2016; Pearl, 2009; Wagner, 1982). An
instance of Simpson’s paradox occurs when a path coefficient and a correlation associated with a
pair of linked variables have different signs (Kock, 2015e; Kock & Gaskins, 2016). A Simpson’s
paradox instance is a possible indication of a causality problem (Kock, 2022b), suggesting that a
hypothesized path is either implausible or reversed. The SPR index is calculated by dividing the
number of paths in a model that are not associated with Simpson’s paradox instances by the total
number of paths in the model. Ideally the SPR should equal 1, meaning that there are no
instances of Simpson’s paradox in a model; acceptable values of SPR are equal to or greater
than 0.7, meaning that at least 70 percent of the paths in a model are free from Simpson’s
paradox (Kock, 2022b).

RSCR. The RSCR index is a measure of the extent to which a model is free from negative R-
squared contributions, which occur together with Simpson’s paradox instances (Kock, 2015¢;
Kock & Gaskins, 2016; Pearl, 2009; Wagner, 1982). When a predictor latent variable makes a
negative contribution to the R-squared of a criterion latent variable (note: the predictor points at
the criterion), this means that the predictor is actually reducing the percentage of variance
explained in the criterion. Such a reduction takes into consideration the contributions of all
predictors plus that of the residual. This index is similar to the SPR. The key difference is that it
is calculated based on the actual values of the R-squared contributions, not on the number of
paths where these contributions have specific signs. The RSCR index is calculated by dividing
the sum of positive R-squared contributions in a model by the sum of the absolute R-squared
contributions (be they negative or positive) in the model. Ideally the RSCR should equal 1,
meaning that there are no negative R-squared contributions in a model; acceptable values of
RSCR are equal to or greater than 0.9, meaning that the sum of positive R-squared
contributions in a model makes up at least 90 percent of the total sum of the absolute R-squared
contributions in the model (Kock, 2022b).

SSR. The SSR index is a measure of the extent to which a model is free from statistical
suppression instances (Kock & Gaskins, 2016; MacKinnon et al., 2000). An instance of
statistical suppression occurs when a path coefficient is greater, in absolute terms, than the
corresponding correlation associated with a pair of linked variables. Like a Simpson’s paradox
instance, a statistical suppression instance is a possible indication of a causality problem (Kock,
2015e; 2022h, Kock & Gaskins, 2016; Spirtes et al., 1993), suggesting that a hypothesized path
may be either implausible or reversed. The SSR index is calculated by dividing the number of
paths in a model that are not associated with medium or greater statistical suppression instances
by the total number of paths in the model. A medium or greater statistical suppression instance is
characterized by an absolute path-correlation ratio that is greater than 1.3. Acceptable values of
SSR are equal to or greater than 0.7, meaning that at least 70 percent of the paths in a model
are free from statistical suppression (Kock, 2022b).

NLBCDR. One interesting property of nonlinear algorithms is that bivariate nonlinear
coefficients of association vary depending on the hypothesized direction of causality (Kock,
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2021c). That is, they tend to be stronger in one direction than the other, which means that the
residual (or error) is greater when the hypothesized direction of causality is in one way or
another. As such, they can be used, together with other coefficients, as partial evidence in
support or against hypothesized causal links. The NLBCDR index is a measure of the extent to
which bivariate nonlinear coefficients of association provide support for the hypothesized
directions of the causal links in a model (Kock, 2022b). The NLBCDR index is calculated by
dividing the number of path-related instances in a model where the support for the reversed
hypothesized direction of causality is more than weak by the total number of path-related
instances involved in this test (this is discussed in more detail later). All of the available
nonlinear algorithms are used in this test. Therefore the total number of path-related instances
involved in this test is greater than the total number of paths. Acceptable values of NLBCDR
are equal to or greater than 0.7, meaning that in at least 70 percent of path-related instances in
a model the support for the reversed hypothesized direction of causality is weak or less. Here
“less” may mean that the support for reversed hypothesized direction of causality is less than
weak (e.g., neutral), or that the hypothesized direction of causality is supported (Kock, 2022b).
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H.2. View path coefficients and P values

Path coefficients and respective P values are shown together, as can be seen in Figure H.2.
Each path coefficient is displayed in one cell, where the column refers to the predictor latent
variable and the row to the criterion. For example, let us consider the case in which the cell
shows 0.225, the column refers to the latent variable “ECUVar”, and the row to the latent
variable “Proc”. This means that the path coefficient associated with the arrow that points from
“ECUVar” to “Proc” is 0.225.

Figure H.2. Path coefficients and P values window

Close  Help
Path coefficients
ECUVar Proc Effi Effe Effi*Proc
ECUVar
Proc 0.225
Effi 0.059 0.459
Effe 029 -0.186
Effi*Proc
P values
ECUVar Proc Effi Effe Effi*Proc
ECUVar
Proc =0.001
Effi 04086 =0.001
Effe =0.001 0.016
Effi*Proc

Since the results refer to standardized variables, a path coefficient of 0.225 means that, in a
linear analysis, a 1 standard deviation variation in “ECUVar” leads to a 0.225 standard deviation
variation in “Proc”. In a nonlinear analysis, the meaning is generally the same, except that it
applies to the overall linear trend of the transformed (or warped) relationship (Kock, 2010;
2016c; 2021c). However, it is important to note that in nonlinear relationships the path
coefficient at each point of a curve varies (Kock, 2016c¢). In nonlinear relationships, the path
coefficient at each point is given by the first derivative of the nonlinear function that describes
the relationship (Kock, 2016c; Kock & Gaskins, 2016).

The P values shown are calculated through one of several methods available, and are thus
method-specific; i.e., they change based on the P value calculation method chosen. In the
calculation of P values, a one-tailed test is generally recommended if the coefficient is assumed
to have a sign (positive or negative), which should be reflected in the hypothesis that refers to the
corresponding association (Kock, 2015a). Hence this software reports one-tailed P values for
path coefficients; from which two-tailed P values can be easily obtained if needed (Kock,
2015a).

One puzzling aspect of many publicly available PLS-based SEM software systems is that they
have historically avoided providing P values, instead providing standard errors and T values, and
leaving the users to figure out what the corresponding P values are. Often users have to resort to
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tables relating T to P values, or other software (e.g., Excel), to calculate P values based on T
values.

This is puzzling because typically research reports will provide P values associated with path
coefficients, which are more meaningful than T values for hypothesis testing purposes (Kock,
2015a; 2016b). This is due to the fact that P values reflect not only the strength of the
relationship (which is already provided by the path coefficient itself) but also the power of the
test, which increases with sample size. The larger the sample size, the lower a path coefficient
has to be to yield a statistically significant P value.
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H.3. View standard errors and effect sizes for path coefficients

Standard errors and effect sizes for path coefficients are provided in two tables where one
standard error and effect size is provided for each path coefficient (see Figure H.3). The effect
sizes provided are similar to Cohen’s (1988) f-squared coefficients, but calculated through a
different procedure to avoid a distortion inherent in the use of classic PLS-based SEM algorithms
(Kock, 2014a). Standard errors and effect sizes are provided in the same order as the path
coefficients, so that users can easily visualize them; and, in certain cases, use them to perform
additional analyses.

Figure H.3. Standard errors and effect sizes for path coefficients window

Close  Help

Standard errors for path coefficients

ECU Effi Effe Proc Proc*Effi
ECU
Effi 0.109
Effe 0.056 0.055 0.043

Proc
Proc*Effi

Effect sizes for path coefficients

ECU Effi Effe Proc Proc*Effi
ECU
Effi 0.030
Effe 0.015 0.284 0.001

Proc
Proc*Effi

As noted earlier, even though the effect sizes provided are similar to Cohen’s (1988) f-squared
coefficients, and have a similar interpretation, they are calculated using a different procedure.
The reason for this is that the stepwise regression procedure proposed by Cohen (1988) for the
calculation of f-squared coefficients is generally not compatible with classic PLS-based SEM
algorithms. The removal of predictor latent variables in latent variable blocks, used in the
stepwise regression procedure proposed by Cohen (1988), tends to cause changes in the weights
linking latent variable scores and indicators, thus biasing the effect size measures.

The effect sizes are calculated by this software as the absolute values of the individual
contributions of the corresponding predictor latent variables to the R-squared coefficients of the
criterion latent variable in each latent variable block. With the effect sizes users can ascertain
whether the effects indicated by path coefficients are small, medium, or large. The values
usually recommended are 0.02, 0.15, and 0.35; respectively (Cohen, 1988). Values below 0.02
suggest effects that are too weak to be considered relevant from a practical point of view,
even when the corresponding P values are statistically significant; a situation that may occur
with large sample sizes (Kock, 2014a).

Additional types of analyses that may be conducted with standard errors are tests of the
significance of any mediating effects using the approach discussed by Kock (2014a). This
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approach consolidates the approaches discussed by Preacher & Hayes (2004), for linear
relationships; and Hayes & Preacher (2010), for nonlinear relationships. The latter, discussed by
Hayes & Preacher (2010), assumes that nonlinear relationships are force-modeled as linear;
which means that the equivalent test using this software would use warped coefficients with the
earlier linear approach discussed by Preacher & Hayes (2004). Again, for the consolidated
version of these approaches, see Kock (2014a). The classic approach used for testing mediating
effects is discussed by Kock (2011b). This approach is a concise version of Baron & Kenny’s
(1986) classic approach, which does not rely on standard errors.

An alternative approach to the analysis of mediating effects, which is arguably much less
time-consuming and prone to error than the approaches mentioned above, would be to rely on the
estimation of indirect effects. These indirect effects and related P values are automatically
calculated by the software, and allow for the test of multiple mediating effects at once, including
effects with more than one mediating variable. Kock & Gaskins (2014) provide an empirical
illustration of the use of this approach. Indirect and total effects are discussed in more detail
later.

Another type of analysis that can employ standard errors for path coefficients is what is often
referred to as a multi-group analysis, where path and measurement model coefficients (usually
weights) can be compared. One of the main goals of this type of analysis is to compare pairs of
path coefficients for identical models but based on different samples. An example would be the
analysis of the same model but with data collected in two different countries. See Kock (2014a)
for a more detailed discussion on the use of effect sizes and other coefficients generated by this
software on advanced mediating effects tests, comprehensive multi-group analyses, and
measurement model assessments.

The above steps are significantly simplified by the features available through the menu options
“Explore multi-group analyses” and “Explore measurement invariance”. These menu options
allow you to conduct analyses where the data is segmented in various groups, all possible
combinations of pairs of groups are automatically generated, and each pair of groups is
compared. The grouping variables can be unstandardized indicators, standardized indicators, and
labels. The sub-options available for group pair comparison refer to the following methods:
constrained latent growth, Satterthwaite, and pooled standard error (Kock, 2014a).
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H.4. View indicator loadings and cross-loadings

The “View indicator loadings and cross-loadings” menu options (See Figure H.4.1) allow users
to view various variations of loadings and cross-loadings (Kock, 2014a): combined loadings and
cross-loadings, normalized combined loadings and cross-loadings, pattern loadings and cross-
loadings, normalized pattern loadings and cross-loadings, structure loadings and cross-loadings,
and normalized structure loadings and cross-loadings.

Figure H.4.1. Indicator loadings and cross-loadings options

View indicator loadings and cross-loadings * View combined loadings and cross-loadings

View indicator weights View normalized combined loadings and cross-loadings
View latent variable coefficients View pattern loadings and cross-loadings

View correlations among latent variables and errors * View normalized pattern loadings and cross-loadings
View block variance inflation factors Wiew structure loadings and cross-loadings

View correlations among indicators View normalized structure leadings and cross-loadings

Combined loadings and cross-loadings are shown in a window, as illustrated in Figure
H.4.2. The same is true for other combinations of loadings and cross-loadings, which are shown
in similar windows. Combined loadings and cross-loadings are provided in a table with each cell
referring to an indicator-latent variable link. Latent variable names are listed at the top of each
column, and indicator names at the beginning of each row. In this table, the loadings are from a
structure matrix (i.e., unrotated), and the cross-loadings from a pattern matrix (i.e., rotated).
Indicator types, as defined, are also provided — reflective or formative.

Figure H.4.2. Combined loadings and cross-loadings window

ECUVar Proc Effi Effe Type (as defined) SE P value
ECUVari |(1.000) 0.000 0.000 0.000 Reflective 0.050 =<0.001
Procl 0.000 (0.844) 0.039 -0.030 Reflective 0.051 =0.001
Proc2 -0.040 (0.885) -0.081 0.130 Reflective 0.0581 <0.001
Proc3 0.044 (0.814) 0.047 0111 Reflective 0.052 <0.001
Effil -0.006 -0.014 (0.896) -0.019 Reflective 0.051 <0.001
Effi2 -0.065 0.035 (0.884) -0.126 Reflective 0.051 <0.001
Effi3 0.005 0.052 (0.821) -0.026 Reflective 0.052 =0.001
Effid 0.079 0117 (0.813) -0.011 Reflective 0.052 <0.001
Effi5 -0.008 0.043 (0.796) 0.200 Reflective 0.052 <0.001
Effel -0.041 0.060 -0.050 (0.931) Reflective 0.051 =0.001
Effe2 0.032 -0.007 -0.051 (0.947) Reflective 0.050 <0.001
Effe3 0.006 0.024 0.080 (0.831) Reflective 0.051 <0.001
Effed 0.007 0.018 -0.038 (0.952) Reflective 0.050 <0.001
Effes 0.036 -0.075 0.006 (0.917) Reflective 0.0581 <0.001
Effeb 0.032 -0.026 -0.066 (0.908) Reflective 0.051 =0.001
Effe? -0.074 0.007 0.132 (0.894) Reflective 0.051 <0.001

In the combined loadings and cross-loadings window, since loadings are from a structure
matrix, and unrotated, they are always within the -1 to 1 range. With some exceptions,
which are discussed below, this obviates the need for a normalization procedure to avoid the
presence of loadings whose absolute values are greater than 1. The expectation here is that for
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reflective latent variables loadings, which are shown within parentheses, will be high; and cross-
loadings will be low. The type of the latent variable as defined by the user, namely reflective
or formative, is also provided in this window to facilitate the application of validity and
reliability tests. The criteria used in these tests are typically different for formative and reflective
latent variables.

P values are provided for indicators associated with all latent variables. These P values
are often referred to as validation parameters of a confirmatory factor analysis (Kline, 1998;
Kock, 2014a; Schumacker & Lomax, 2004), since they result from a test of a model where the
relationships between indicators and latent variables are defined beforehand. Conversely, in an
exploratory factor analysis (Ehremberg & Goodhart, 1976), relationships between indicators and
latent variables are not defined beforehand, but inferred based on the results of a factor extraction
algorithm. The principal components analysis algorithm is one of the most popular of these
algorithms, even though it is often classified as outside the scope of classic factor analysis.
Confirmatory factor analyses, instead of exploratory factor analyses, are usually conducted in
conjunction with SEM analyses.

For research reports, users will typically use the table of combined loadings and cross-loadings
provided by this software when describing the convergent validity of their measurement
instrument. A measurement instrument has good convergent validity if the question-statements
(or other measures) associated with each latent variable are understood by the respondents in the
same way as they were intended by the designers of the question-statements. In this respect, two
criteria are recommended as the basis for concluding that a measurement model has acceptable
convergent validity: that the P values associated with the loadings be equal to or lower than
0.05; and that the loadings be equal to or greater than 0.5 (Amora, 2021; Hair et al., 1987;
2009; Kock, 2014a).

Indicators for which these criteria are not satisfied may be removed. This does not apply to
formative latent variable indicators, which are assessed in part based on P values
associated with indicator weights (Kock, 2014a). If the offending indicators are part of a
moderating effect, then you should consider removing the moderating effect if it does not meet
the requirements for formative measurement (Kock, 2014a; Kock & Lynn, 2012). Moderating
effect latent variable names are displayed on the table as product latent variables (e.g.,
Effi*Proc).

Moderating effect indicator names are displayed on the table as product indicators (e.g.,
“Effil*Proc1”). Long names are reduced to avoid a “crowded” look. High P values for
moderating effects, to the point of being non-significant at the 0.05 level, may suggest
multicollinearity problems; which can be further checked based on the latent variable
coefficients generated by the software, more specifically, the full collinearity VIFs (Kock,
2021a). Some degree of collinearity is to be expected with moderating effects, since the
corresponding product variables are likely to be correlated with at least their component latent
variables. Moreover, moderating effects add nonlinearity to models (Kock, 2021c), which can in
some cases compound multicollinearity problems. Because of these and other related issues,
moderating effects should be included in models with caution.

Standard errors are also provided for the loadings, in the column indicated as “SE”, for
indicators associated with all latent variables. They can be used in specialized tests. Among other
purposes, these standard errors can be used in multi-group analyses, with the same model but
different sub-samples. In these cases, users may want to compare the measurement models to
ascertain equivalence based on loadings and weights, using a multi-group comparison technique
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such as the one documented by Kock (2014a) and Keil et al. (2000), and thus ensure that any
observed between-group differences in structural model coefficients are not due to measurement
model differences. Keil et al.’s (2000) discussion on multi-group analyses includes an equation
that contains an error; the correct form of the equation is used in Kock’s (2014a) discussion. The
equation in question is for the calculation of a pooled standard error, and is one of the two
equations discussed by Kock (2014a) in the context of multi-group analyses; the other
implements the alternative Satterthwaite method. According to Keil et al. (2000), the original
proponent of the pooled standard error equation is Wynne Chin, one of the world’s foremost
authorities on PLS-based SEM.

Normalized loadings and cross-loadings. Normalized versions of the combined, pattern, and
