International Journal of e-Collaboration, 7(2), 1-18, April-June 2011 1

Using WarpPLS in

e-Collaboration Studies:
Descriptive Statistics, Settings,
and Key Analysis Results

Ned Kock, Texas A&M International University, USA

ABSTRACT

This is a follow-up on a previous article (Kock, 2010b) discussing the five main steps through which a non-
linear structural equation modeling analysis could be conducted with the software WarpPLS (warppls.com).
Both this and the previous article use data from the same e-collaboration study as a basis for the discussion
of important WarpPLS features. The focus of this article is on specific features related to saving and analyzing
grouped descriptive statistics, viewing and changing analysis algorithm and resampling settings, and viewing
and saving the various minor and major results of the analysis. Even though its focus is on an e-collaboration
study, this article contributes to the broad literature on multivariate analysis methods, in addition to the
more specific research literature on e-collaboration. The vast majority of relationships between variables, in
investigations of both natural and behavioral phenomena, are nonlinear; usually taking the form of U and S
curves. Structural equation modeling software tools, whether variance- or covariance-based, typically do not
estimate coefficients of association based on nonlinear analysis algorithms. WarpPLS is an exception in this
respect. Without taking nonlinearity into consideration, the results can be misleading; especially in complex
and multi-factorial situations such as those stemming from e-collaboration in virtual teams.

Keywords: Multivariate Statistics, Nonlinear Analysis, Partial Least Squares, Structural Equation Modeling,
Virtual Teams, WarpPLS
INTRODUCTION onstrated through asequential logical inference

The vast majority of the statistical methods
used in the behavioral sciences, and many of
those used in the natural sciences, can be seen
as special cases of structural equation modeling
(SEM). This applies to both univariate (a.k.a.
bivariate) and multivariate statistical analysis
methods (Hair et al., 1987). This can be dem-
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process. In short, it can be shown that most of
these methods are instances of multiple regres-
sion analysis, which is itself an instance of path
analysis, which in turn is an instance of SEM.

Methods like ANOVA,ANCOVA, MANO-
VA and MANCOVA can be shown to be special
cases of multiple regression analysis (Hairetal.,
1987; Rencher, 1998). In multiple regression
analysis, hypothesis testing is typically con-
ducted through the calculation of coefficients
of association between multiple independent
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variables and one main dependent variable.
These coefficients of association normally
take the form of standardized partial regres-
sion coefficients (Rencher, 1998; Rosenthal &
Rosnow, 1991). The corresponding P values are
the probabilities that the relationships reflected
in the coefficients are “real”.

Path analysis is a method developed by
Sewall Wright in the 1930s (Wolfle, 1999;
Wright, 1934) and later “rediscovered” by
statisticians and social scientists. Sewall Wright
was an evolutionary biologist and animal
breeder. He was also one of the founders of
the field of population genetics. Population
genetics unified Darwin’s theory of evolution
with Mendel’s theory of genetics. Another co-
founder of the field of population genetics was
Ronald A. Fisher, who also has made many
contributions to the field of statistics (Hair et
al., 1987; Kock, 2009).

Any path analysis model can be decom-
posed into one or more multiple regression
models (Gefen et al., 2000; Kline, 1998).
Each of the multiple regression models can
then be solved separately, and the solution
combined into one main solution to the path
analysis model. In this sense, multiple regres-
sion analysis can be seen as a special case of
path analysis. Since SEM is essentially path
analysis with latent variables (LVs), then path
analysis can be seen as a special case of SEM
(Maruyama, 1998). As a corollary, all of the
methods discussed above can also be seen as
special cases of the SEM.

In SEM, LV scores are calculated as
weighted averages of their respective indica-
tors. Usually there are two or more indicators
for each LV, although that is not always the
case. Once LV scores are calculated, the SEM
solution problem is reduced to the solution of a
path analysis model. That is achieved through
the calculation of path coefficients and respec-
tive P values, as well as several other ancillary
statistical coefficients. The path coefficients
are standardized partial regression coefficients,
which are mathematically identical to those
obtained through multiple regression analyses.

The calculation of weights linking indica-
tors to LVs is one of the key aspects that differ-
entiate SEM approaches. Those approaches can
be divided into two with main types: variance-
and covariance-based (Chin etal., 2003; Gefen
et al., 2000; Haenlein & Kaplan, 2004; Kline,
1998). One of the main advantages of variance-
based SEM is that it employs robust statistics
to calculate P values, and thus can be seen as a
nonparametric equivalent to covariance-based
SEM. That is, unlike covariance-based SEM,
variance-based SEM typically yields robust
results even inthe presence of small samples and
multivariate deviations from normality (Chin et
al., 2003; Gefen et al., 2000). Variance-based
SEM is often referred to as PLS-based SEM,
where “PLS” stands for “partial least squares”
or “projection to latent structures”. The term
“PLS-based SEM” is actually more commonly
found in the literature than the term “variance-
based SEM” (Chin et al., 2003; Haenlein &
Kaplan, 2004).

The vast majority of relationships between
variables, in investigations of both natural and
behavioral phenomena, are nonlinear; usually
taking the form of U and S curves. In spite of
this, SEM software tools do not usually take
nonlinear relationships between LVs into con-
sideration in the calculation of path coefficients,
respective P values, or other related statistical
coefficients (e.g., R-squared coefficients). The
SEM software WarpPLS (warppls.com), re-
leased as version 1.0 at the time of this writing,
is an exception in this respect (Kock, 2010).

This article is a follow-up on a previous
article (Kock, 2010b) discussing the five main
steps through which anonlinear structural equa-
tionmodeling analysis could be conducted with
the software WarpPLS. Both this and the previ-
ousarticleuse the same e-collaboration study as
abasis for the discussion of important WarpPLS
features. Unlike in the previous article, the focus
here is on specific features related to saving
and analyzing grouped descriptive statistics,
viewing and changing analysis algorithm and
resampling settings, and viewing and saving the
various minor and major results of the analysis.

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.



International Journal of e-Collaboration, 7(2), 1-18, April-June 2011 3

THE E-COLLABORATION STUDY

In the following sections, several screens are
used to illustrate important features of Warp-
PLS. Those screens were generated based on
an e-collaboration study if virtual teams. A total
of 290 teams were studied. The teams were
tasked with developing new products, goods or
services, in a variety of organizations belong-
ing to multiple industries and sectors (e.g.,
aerospace and banking; service and manufac-
turing; respectively). Data related to five LVs
were collected as part of the study. The LVs are
indicated here as “ECU”, “ECUVar”, “Proc”,
“Effi”, and “Effe”.

“ECU” refers to the extent to which elec-
tronic communication media were used by
each team. “ECUVar” refers to the variety of
different electronic communication mediaused
by each team. “Proc” refers to the degree to
which each team employed established project
management techniques, referred to in the study
as procedural structuring techniques. “Effi”
refers to the efficiency of each team, in terms
of task completion cost and time. “Effe” refers
to the effectiveness of each team, in terms of
the actual commercial success of the new goods
or services that each team developed.

SAVING AND ANALYZING
GROUPED DESCRIPTIVE
STATISTICS

Once steps 1 and 2 of an SEM analysis are
completed through WarpPLS, you (the user)
can then save and analyze grouped descriptive
statistics. Through Step 1, you will open or cre-
ate a project file to save your work. Through
Step 2, you will read the raw data used in the
SEM analysis.

When the “Save grouped descriptive
statistics into a tab-delimited .txt file” option
is selected, a data entry window is displayed
(Figure 1). There you can choose a grouping
variable, number of groups, and the variables to
be grouped. This option is useful if one wants
to conduct a comparison of means analysis

using the software, where one variable (the
grouping variable) is the predictor, and one or
more variables are the criteria (the variables
to be grouped). Arguably the comparison of
means is the most common type of analysis
used in the natural and behavioral sciences.
One of the reasons for this is that this type of
analysis is intuitively appealing and its results
are easy to understand.

Figure 2 shows the grouped statistics data
saved through the window shown in Figure 1.
The tab-delimited .txt file was opened with a
spreadsheet program, and contained the data
on the left part of the figure.

That data on the left part of Figure 2 was
organized as shown above the bar chart. The
data are the means and standard deviations for
each interval (or group). Next the bar chart was
created using the spreadsheet program’s chart-
ing feature. If a simple comparison of means
analysis using this software had been con-
ducted in which the grouping variable (in this
case, an indicator called “ECU1”) was the
predictor, and the criterion was the indicator
called “Effel”, those two variables would have
been connected through a path in a simple path
model with only one path. Assuming that the
path coefficient was statistically significant, the
bar chart displayed in Figure 2, or a similar bar
chart, could be added to a report describing the
analysis.

Some may think that it is an overkill to
conduct a comparison of means analysis using
an SEM software package such as this, but
there are advantages in doing so. One of those
advantages is that this software calculates P
values using a nonparametric class of estima-
tion techniques, namely resampling estimation
techniques. (These are sometimes referred to
as bootstrapping techniques, which may lead to
confusion since bootstrapping is also the name
of a type of resampling technique.) Nonpara-
metric estimation techniques do not require
the data to be normally distributed, which is
a requirement of other comparison of means
techniques (e.g., ANOVA).

Another advantage of conducting a com-
parison of means analysis using this software
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Figure 1. Save grouped descriptive statistics window
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is that the analysis can be significantly more
elaborate. Forexample, the analysis may include
control variables (or covariates), which would
make it equivalent to an ANCOVA test. Finally,
the comparison of means analysis may include
LVs, as either predictors or criteria. This is not
usually possible with ANOVA or commonly
used nonparametric comparison of means tests
(e.g., the Mann-Whitney U test).

VIEWING AND CHANGING
ANALYSIS ALGORITHM AND
RESAMPLING SETTINGS

The view or change settings window (Figure 3)
allows you to select an algorithm for the SEM
analysis, selectaresampling method, and select
the number of resamples used (this latter option
isonly useful if the resampling method selected
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Figure 3. View or change settings window
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was bootstrapping). The analysis algorithms
available are Warp3 PLS Regression, Warp2
PLS Regression, PLS Regression, and Robust
Path Analysis.

Many relationships in nature, including
relationships involving behavioral variables,
are nonlinear and follow a pattern known as
U-curve (or inverted U-curve). In this pattern
avariable may affect another in a way thatleads
to a maximum or minimum value, where the
effect is either maximized or minimized, re-
spectively. This type of relationship is also
referred to as a J-curve pattern. This latter term
is more commonly used in economics and the
health sciences.

U curves also refer to sections of a complete
U- or J-shaped curve. Therefore U curves can be
used to model the majority of the usually seen
functions innatural and behavioral studies. These
are non-cyclical functions, such as logarithmic,
exponential, and hyperbolic decay functions.

When the relationships fit well with the forms
of these common types of functions, S-curve
approximations (which are mono-cyclical) will
usually default to U curves.

The Warp2 PLS Regression algorithm tries
to identify a U-curve relationship between LVs,
and, if that relationship exists, the algorithm
transforms (or “warps”) the scores of the predictor
LVssoastobetterreflect the U-curverelationship
in the estimated path coefficients in the model.

The Warp3 PLS Regression algorithm, the
default algorithm used by the software, tries
to identify a relationship defined by a function
whose first derivative is a U-curve. This type
of relationship follows a pattern that is more
similar to an S-curve (or a somewhat distorted
S-curve), and can be seen as a combination
of two connected U-curves, one of which
is inverted.

The PLS Regression algorithm does not
perform any warping of relationships. It is

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.



6 International Journal of e-Collaboration, 7(2), 1-18, April-June 2011

essentially a standard PLS regression algo-
rithm (Wold et al., 2001), whereby indicators’
weights, loadings and factor scores (a.k.a. LV
scores) are calculated based on a least squares
minimization sub-algorithm, after which path
coefficients are estimated using a robust path
analysis algorithm. A key criterion for the cal-
culation of the weights, observed in virtually
all PLS-based algorithms, is that the regression
equation expressing the relationship between the
indicators and the LV scores has an error term
that equals zero. In other words, the LV scores
are calculated as exact linear combinations of
their indicators.

PLS regression (Wold et al., 2001) is the
underlying weight calculation algorithm used
in both Warp3 and Warp2 PLS Regression.
The warping takes place during the estimation
of path coefficients, and after the estimation
of all weights and loadings in the model. It
occurs only if the Warp3 or Warp2 algorithms
are used. The weights and loadings of a model
with LVs make up what is often referred to
as outer model, whereas the path coefficients
among LVs make up what is often called the
inner model.

Finally, the Robust Path Analysis algorithm
is a simplified algorithm in which LV scores
are calculated by averaging all of the indica-
tors associated with a LV; that is, in this algo-
rithm weights are not estimated through PLS
regression. This algorithm is called “Robust”
Path Analysis, because, as with most robust
statistics methods, the P values are calculated
through resampling. If all LVs are measured
with single indicators, the Robust Path Analysis
and the PLS Regression algorithms will yield
identical results.

One of two resampling methods may
be selected: bootstrapping or jackknifing.
Bootstrapping, the software’s default, is a
resampling algorithm that creates a number of
resamples (a number that can be selected by the
user), by a method known as “resampling with
replacement”. This means that each resample
contains a random arrangement of the rows

of the original dataset, where some rows may
be repeated. (The commonly used analogy of
a deck of cards being reshuffled, leading to
many resample decks, is a good one. But it is
not entirely correct because in bootstrapping
the same card may appear more than once in
each of the resample decks.)

Jacknifing, on the other hand, creates a
number of resamples that equals the original
sample size, and each resample has one row
removed. That is, the sample size of each
resample is the original sample size minus 1.
Thus, the choice of number of resamples has
no effect on jackknifing, and is only relevant
in the context of bootstrapping.

The default number of resamples is 100,
and it can be modified by entering a different
number in the appropriate edit box. (Please
note that we are talking about the number of
resamples here, not the original data sample
size.) Leaving the number of resamples for
bootstrapping as 100 is recommended because
it has been shown that higher numbers of resa-
mples lead to negligible improvements in the
reliability of P values; in fact, even setting the
number of resamples at 50 is likely to lead to
fairly reliable P value estimates (Efron et al.,
2004). Conversely, increasing the number of
resamples well beyond 100 leads to a higher
computation load on the software, making
the software look like it is having a hard time
coming up with the results. In very complex
models, a high number of resamples may make
the software run very slowly.

Some researchers have suggested in the
past that a large number of resamples can
address problems with the data, such as the
presence of outliers due to errors in data col-
lection. This opinion is not shared by several
researchers, including the original developer
of the bootstrapping method, Bradley Efron
(Efron et al., 2004).

Arguably jackknifing does a better job
at addressing problems associated with the
presence of outliers due to errors in data col-
lection. Generally speaking, jackknifing tends
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to generate more stable resample path coef-
ficients (and thus more reliable P values) with
small sample sizes (lower than 100), and with
samples containing outliers. In these cases,
outlier data points do not appear more than once
in the set of resamples, which accounts for the
better performance of jackknifing (Chiquoine
& Hjalmarsson, 2009).

Bootstrapping tends to generate more
stable resample path coefficients (and thus more
reliable P values) with larger samples and with
samples where the data points are evenly distrib-
uted on a scatter plot. The use of bootstrapping
with small sample sizes (lower than 100) has
been discouraged (Nevitt & Hancock, 2001).

Since the warping algorithms are also
sensitive to the presence of outliers, in many
cases it is a good idea to estimate P values with
both bootstrapping and jackknifing, and use
the P values associated with the most stable
coefficients. An indication of instability is a
high P value (i.e., statistically insignificant)
associated with path coefficients that could
be reasonably expected to have low P values.
For example, with a sample size of 100, a path
coefficient of .2 could be reasonably expected
to yield a P value that is statistically significant
atthe .05 level. If that is not the case, there may
be a stability problem. Another indication of
instability is a marked difference between the
P values estimated through bootstrapping and
jackknifing.

Pvalues can be easily estimated using both
resampling methods, bootstrapping and jack-
knifing, by following this simple procedure. Run
an SEM analysis of the desired model, using
one of the resampling methods, and save the
project. Then save the project again, this time
with a different name, change the resampling
method, and run the SEM analysis again. Then
save the second project again. Each project file
will now have results that refer to one of the two
resampling methods. The P values can then be
compared, and the most stable ones used in a
research report on the SEM analysis.

VIEWING AND SAVING
THE VARIOUS RESULTS
OF THE ANALYSIS

As soon as an SEM analysis is completed
with WarpPLS, the software shows the results
in graphical format on a window, which also
contains a number of menu options that allow
you to view and save more detailed results. The
sections below refer to each of these various
menu options.

General Analysis Results

General SEM analysis results (Figure 4) include:
project file details, such as the project file
name and when the file was last saved; model
fit indices, which are discussed in more detail
below; and general model elements, such as
the algorithm and resampling method used in
the SEM analysis.

Under the project file details, both the raw
data path and file are provided. Those are pro-
vided for completeness, because once the raw
data is imported into a project file, it is no
longer needed for the analysis. Once a raw data
file is read, it can even be deleted without any
effect on the project file, or the SEM analysis.

Three model fitindices are provided: aver-
age path coefficient (APC), average R-squared
(ARS), and average variance inflation factor
(VIF). For the APC and ARS, P values are also
provided. These P values are calculated through
a complex process that involves resampling
estimations coupled with Bonferroni-like cor-
rections. This is necessary since both fit indices
are calculated as averages of other parameters.

The interpretation of the model fit indices
depends on the goal of the SEM analysis. If
the goal is to test hypotheses, where each ar-
row represents a hypothesis, then the model
fit indices are of little importance. However, if
the goal is to find out whether one model has
a better fit with the original data than another,
then the model fit indices are a useful set of
measures related to model quality.
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Figure 4. General SEM analysis results window
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General model elements

Algorithm used in the analysis: Warp3 PLS regression
Resampling method used in the analysis: Jackknifing
Number of data resamples used: 100

Number of cases (rows) in model data: 290

When assessing the model fit with the data,
the following criteria are recommended. First,
it is recommended that the P values for the
APC and ARS be both lower than .05; that is,
significant at the .05 level. Second, it is recom-
mended that the AVIF be lower than 5. When
comparing competing models, the ARS index
should be given higher importance in terms
of model fit than either AVIF or APC. Next in
importance comes AVIF. APC comes third. One
of'the reasons for this is that the APC index may
be low simply because there are many changes
in path coefficient signs in the model. This is
discouraged since it can lead to a phenomenon
known as “suppression” (Kline, 1998), where
competing path coefficients are distorted due to
having different signs. However, different path
coefficient signs may not have any significant
distorting effect on competing path coefficients,
which warrants placing APC as third in order
of importance.

Typically the addition of new LVs into a
model will increase the ARS, even if those LVs
are weakly associated with the existing LVs in

the model. However, that will generally lead to
a decrease in APC, since the path coefficients
associated with the new LVs will be low. Thus,
the APC and ARS will counterbalance each
other, and will only increase together if the LVs
that are added to the model enhance the overall
predictive and explanatory quality of the model.
This assumes that all path coefficients have
the same sign. Path coefficients can be made
to all have the same sign (usually positive) by
reversing variables as needed. For example, if
a variable D (reflecting dullness) is negatively
associated with P (performance), anew variable
E (excitement) may be used instead of D. In
this case, E is D reversed, and the association
between E and P will be positive.

The AVIF index will increase if new LVs
are added to the model in such a way as to add
multicolinearity to the model, which may result
from the inclusion of new LVs that overlap
in meaning with existing LVs. It is generally
undesirable to have different LVs in the same
model that measure the same thing; those should
be combined into one single LV. Thus, the
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Figure 5. Path coefficients and P values window
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AVIF brings in a new dimension that adds to a
comprehensive assessment of amodel’s overall
predictive and explanatory quality.

Path Coefficients and P Values

Path coefficients and respective P values are
shown together, as can be seen in Figure 5.
Each path coefficient is displayed in one cell,
where the column refers to the predictor LV
and the row to the criterion. For example, let
us consider the case in which the cell shows
.145, and the column refers to the LV “ECU”
and the row to the LV “Proc”. This means that
the path coefficient associated with the arrow
that points from “ECU” to “Proc” is .145. Since
the results refer to standardized variables, this
means that a 1 standard deviation variation
in “ECU” leads to a .145 standard deviation
variation in “Proc”.

The P values shown are calculated by
resampling, and thus are specific to the resam-
pling method and number of resamples se-
lected by the user. As mentioned earlier, the

Effe EFfi ECU Effi*Prac
0.145
-0.186
0189
Effe Effi ECU EFfi*Proc
0.007
<0.001
0.044

choice of number ofresamples is only meaning-
ful for the bootstrapping method, and numbers
higher than 100 add little to the reliability of
the P value estimates.

One puzzling aspect of many publicly avail-
able PLS-based SEM software systems is that
they do not provide P values, instead providing
standard errors and T values, and leaving the
users to figure out what the corresponding P
values are. Often users have to resort to tables
relating T to P values, or other software (e.g.,
Excel), to calculate P values based on T values.

This is puzzling because typically research
reports will provide P values associated with
path coefficients, which are more meaningful
than T values for hypothesis testing purposes.
This is due to the fact that P values reflect not
only the strength of the relationship (which is
already provided by the path coefficient itself)
but also the power of the test, which increases
with sample size. The larger the sample size,
the lower a path coefficient has to be to yield
a statistically significant P value.
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Indicator Loadings and
Cross-Loadings

Indicator loadings and cross-loadings are
provided in a table with each cell referring to
an indicator-LV link (Figure 6). LV names are
listed at the top of each column, and indicator
names at the beginning of each row.

These indicator loadings and cross-load-
ings are from a pattern matrix, which is obtained
after the transformation of a structure matrix
through an oblique rotation. The structure
matrix contains the Pearson correlations be-
tween indicators and LVs, which are not par-
ticularly meaningful prior to rotation in the
context of measurement instrument validation.
Because an oblique rotation is employed, in
some cases loadings may be higher than 1
(Rencher, 1998), which should have no effect
on their interpretation. The expectation is that
loadings, which are shown within parentheses,
will be high; and cross-loadings will be low.

The main difference between oblique and
orthogonal rotation methods is that the former
assume that there are correlations, some of
which may be strong, among LVs. Arguably
oblique rotation methods are the most appro-
priate in PLS-based SEM analysis, because by
definition LVs are expected to be correlated in
SEM. Otherwise, no path coefficient would be
significant. (Technically speaking, itis possible
that a research study will hypothesize only
neutral relationships between LVs, which could
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call for an orthogonal rotation. However, this
is rarely, if ever, the case.)

P values are also provided, but only for
reflective and moderating LVs. These P values
are often referred to as validation parameters of
aconfirmatoty factor analysis, since they result
from a test of a model where the relationships
between indicators and LVs are defined be-
forehand. Conversely, in an exploratory factor
analysis, relationships between indicators and
LVs are not defined beforehand, but inferred
based on the results yielded by a factor extrac-
tion algorithm; principal components analysis
is one of the most popular of these algorithms.

For research reports, users will typically
use the table of loadings and cross-loadings
provided by this software when describing
the convergent validity of their measurement
instrument. Ameasurement instrument has good
convergent validity if the question-statements
(or other measures) associated with each LV
are understood by the respondents in the same
way as they were intended by the designers
of the question-statements. In this respect,
two criteria are recommended as the basis for
concluding that a measurement model has ac-
ceptable convergent validity: that the P values
associated with the loadings be lower than .05;
and that the loadings be equal to or greater than
.5 (Hair et al., 1987).

Indicators for which these criteria are not
satisfied may be removed. This does not apply
to formative LV indicators. Ifthe offending indi-

Figure 6. Indicator loadings and cross-loadings window

) "WarpPLS 1.0 - Indicator loadings and cross loadings

Close  Help
| ECUVar Prac Effa

ECUVari (1.000) 0.000 -0.000
Procl |-0.005 (0.830) -0.028
Proc2 10.035 (0.893) 0.132
Proc3 10.044 (0.831) D.114
Effel 10.044 0.060 (0.942)
Effe2 10.028 0.009 (0.978)
Effed 0.004 0.016 0.772)
Effed 10.010 0.020 (0.986)
Effe5 0.039 £0.077 (0.932)

Effi ECU Efff*Proc P yalus
0.000 0.000 -0.000 <0.001
0.036 -0.013 -0.027 <0.001
-0.083 -0.025 -0.008 <0.001
0.083 0.041 0.038 <0.001
-0.048 0.004 0.005 <0.001
-0.055 -0.021 0.030 <0.001
0.091 0.063 0.019 <0.001
-0.037 -0.044 -0.002 <0.001
0.005 0.024 -0.009 <0.001
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cators are part of a moderating effect, then you
should consider removing the moderating effect.
Moderating effect LV names are displayed on the
tableasproductLVs (e.g., Effi*Proc). Moderat-
ing effect indicator names are displayed on the
table as productindicators (e.g., “Effil *Proc1”).
Low P values for moderating effects suggest
possible multicolinearity problems. This is to
be expected with moderating effects, since the
corresponding product variables are likely to be
correlated with at least their component LVs.
Moreover, moderating effects add nonlinearity
to models, which can in some cases compound
multicolinearity problems. Because ofthese and
other related issues, moderating effects should
be used sparingly.

Indicator Weights

Indicator weights are provided in a table, much
inthe same way as indicator loadings are (Figure
7). All cross-weights are zero, because of the
way they are calculated through PLS regression.
Each LV score is calculated as an exactly linear
combination of'its indicators, where the weights
are multiple regression coefficients linking the
indicators to the LV.

P values are provided for weights associ-
ated with formative LVs. These values can also
be seen, together with those for loadings as-

Figure 7. Indicator weights window

sociated with reflective and moderating LVs,
as the result of a confirmatory factor analysis.
In research reports, users may want to report
these P values as an indication that formative
LV measurement items were properly con-
structed.

As in multiple regression analysis (Miller
& Wichern, 1977; Mueller, 1996), it is recom-
mended that weights with P values lower than
.05 be considered valid items in a formative
LV measurement item subset. Formative LV
indicators whose weights do not satisfy this
criterion may be considered for removal.

However, this criterion should not trump
other criteria grounded on formative LV theory
(Diamantopoulos, 1999; Diamantopoulos &
Winklhofer, 2001; Diamantopoulos & Siguaw,
2006). Among other things, formative LVs are
expected, often by design, to have many indi-
cators (e.g., 15 or more). Yet, given the nature
of multiple regression, indicator weights will
normally go down as the number of indica-
tors goes up , as long as those indicators are
somewhat correlated. Respective P values will
normally go up as well.

Latent Variable Coefficients

Several estimates are provided for each LV that
can be used in research reports for discussions

Close  Help
ECLNar | Prac [ Effe Effi | ECU | EffitProc | Pvalue
CIng (SRYE ) oooU oo WZaT1]) ooy oo
EFfi4 0.000 0.000 0.000 0.229) 0.000 0.000
Effi 0.000 0.000 0.000 (0.224) 0.000 0.000
| ECUL 0.000 0.000 0.000 0.000 (0.401) 0.000 <0.001

ECU2 0.000 0.000 0.000 0.000 (0.399) 0.000 <0.001
B0z 0,000 0.000 0.000 0.000 0.172) 0.000 0.001
ECU4 0,000 0.000 0.000 0.000 (0.252) 0.000 <0.001
ECUS 0.000 0.000 0.000 0.000 (0.217) 0.000 =0.001

EFfil*Procl 0.000 0.000 0.000 0.000 0.000 (0.092)

Effil*Proc2 0.000 0.000 0.000 0.000 0.000 (0.024)

Effil*Proc3 0.000 0.000 0.000 0.000 0.000 (D.020)

Effiz*Procl 0.000 0.000 0.000 0.000 0.000 (0.091)

Effi2*Proc2 0.000 0.000 0.000 0.000 0.000 (0.093)

Effi2*Proc3 0.000 0.000 0.000 0.000 0.000 (0.088)

Effid*Frocl 0.000 0.000 0.000 0.000 0.000 (0.088)
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on the measurement instrument’s reliability
and discriminant validity (Figure 8). R-squared
coefficients are provided only for endogenous
LVs, and reflect the percentage of explained
variance for each of those LVs. Composite
reliability and Cronbach alpha coefficients are
provided for all LVs; these are measures of reli-
ability. Average variances extracted (AVE) are
also provided for all LVs, and are used in the
assessment of discriminant validity.

The following criteria, one more conserva-
tive and the other two more relaxed, are sug-
gested in the assessment of the reliability of a
measurement instrument. These criteria apply
only to reflective LV indicators. Reliability is
a measure of the quality of a measurement
instrument; the instrument itself is typically a
set of question-statements. A measurement
instrument has good reliability if the question-
statements (or other measures) associated with
each LV are understood in the same way by
different respondents.

More conservatively, both the compositive
reliability and the Cronbach alpha coefficients
should be equal to or greater than .7 (Fornell
& Larcker, 1981; Nunnaly, 1978; Nunnally &
Bernstein, 1994). The more relaxed version

Figure 8. Latent variable coefficients window

of this criterion, which is widely used, is that
one of the two coefficients should be equal to
or greater than .7. This typically applies to the
composite reliability coefficient, which is usu-
ally the higher of the two (Fornell & Larcker,
1981). An even more relaxed version sets this
threshold at .6 (Nunnally & Bernstein, 1994).
If a LV does not satisfy any of these criteria,
the reason will often be one or a few indicators
that load weakly on the LV. These indicators
should be considered for removal.

Average variances extracted are normally
used in conjunction with LV correlations in
the assessment of a measurement instrument’s
discriminant validity. This is discussed below,
together with the discussion of the table of
correlations among LVs.

Correlations Among
Latent Variables

Among the results generated by this software
are tables containing LV correlations, and the
P values associated with those correlations
(Figure 9). On the diagonal of the LV correla-
tions table are the square roots of the average
variances extracted for each LV. These results

| -) 'WarpPLS 1.0 - Latent variable coefficients

Close  Help

R-squared coefficients

ECUVar Prec | Effe | EFi ECU Effi*Proc

0.072 0.16 0.025

Compaosite reliability coefficients

ECLNar Proe Eife Eifi ECU Eifi*Proc |
1.000 0.885 0.972 0.925 0.776 0953
Cronbach alpha coefficiants

ECLVar Froc Effe EFfi ECU Effi*Proc
1.000 0.805 0.966 0.897 0649 0.947
Average variances extracted

ECLVar Proc | Effe Effi ECU Effi*Proc
1.000 0.720 0.832 0.711 0.435 0.578
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are used for the assessment of the measurement
instrument’s discriminant validity.

In most research reports, users will typi-
cally show the table of correlations among LV's,
with the square roots of the average variances
extracted on the diagonal, to demonstrate that
their measurement instrument passes widely
accepted criteria for discriminant validity as-
sessment. A measurement instrument has good
discriminant validity if the question-statements
(or other measures) associated with each LV
are not confused by the respondents to the
questionnaire with the question-statements
associated with other LVs, particularly in terms
of the meaning of the question-statements.

The following criterion is recommended for
discriminant validity assessment: for each LV,
the square root of the average variance extracted
should be higher than any of the correlations
involving that LV (Fornell & Larcker, 1981).
That is, the values on the diagonal should be
higher than any of the values above or below
them, in the same column. Or, the values on the
diagonal should be higher than any of the values
to their left or right, in the same row; which

means the same as the previous statement, given
the repeated values of the LV correlations table.

Theabove criterion applies to reflective and
formative LVs,as well as product LVs represent-
ing moderating effects. If it is not satisfied, the
culpritisusually an indicator that loads strongly
on more than one LV. Also, the problem may
involve more than one indicator. You should
check theloadings and cross-loadings matrix to
see if you can identify the offending indicator
or indicators, and consider removing it.

Second to LVs involved in moderating
effects, formative LVs are the most likely to
lead to discriminant validity problems. This is
one of the reasons why formative LVs are not
used as often as reflective LVs in empirical
research. In fact, it is wise to use formative
variables sparingly in models that will serve
as the basis for SEM analysis. Formative vari-
ables can in many cases be decomposed into
reflective LVs, which themselves can then be
added to the model. Often this provides a bet-
ter understanding of the empirical phenomena
under investigation, in addition to helping avoid
discriminant validity problems.

Figure 9. Correlations among latent variables window

Close Help

Latent variable correlations

-] Warp' 1.0 - Correlations among latent variables

] | ECUvar | Proc Effe Effi | ECU Effi*Proc
ECUVar (1.000) 0222 0122 0.035 0.042 -0.040
Proc l2m (D.848) 0.344 0.456 0.135 -0.334
Effe J 122 0344 0.912) 0525 0.087 -0.173
Effi 0.035 0.458 0.525 (0.843) 0.021 -0.172
ECU .".! 042 0135 0087 0.021 [0.689) -0.028
 EffrPrc |0.040 -0.334 0173 0172 -0.028 (0.780)

fiote: Square roots of average variances extracted (AVE's] shown on dizgonal

P values for correlations

ECUVar Froc Effe e | ECu Effi*Proc |
| Eawx 1000 <001 003 0551 0.475 0502
Poc <001 1.000 <001 <001 0.0 <001
Effe .'.'! 038 < 001 1.000 < 001 0.139 0.003
e 551 <001 <001 1.000 0727 0.003
EU [o.475 002 0133 077 1.000 0631
EifrProc  0.502 <001 0.003 0.003 0631 1.000
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Figure 10. Variance inflation factors window

;' "WarpPLS 1.0~ Variance inflation factors

Close  Help

ECUVar Proc
ECUVar
Prac 1.003
Effe 1.231
£
ECU
EFfi*Proc

Effe | EFffi ] ECU Efff*Proc |

1.003
1.231

Variance Inflation factors

Variance inflation factors are provided in table
format (Figure 10) for each LV that has two
or more predictors. Each variance inflation
factor is associated with one predictor, and
relates to the link between that predictor and
its LV criterion. (Or criteria, when one predic-
tor LV points at two or more different LVs in
the model).

A variance inflation factor is a measure
of the degree of multicolinearity among the
LVs that are hypothesized to affect another
LV. For example, let us assume that there is a
block of LVs in a model, with three LVs: A,
B, and C (predictors); pointing at one LV: D.
In this case, variance inflation factors are
calculated for A, B, and C, and are estimates
of the multicolinearity among these predictor
LVs.

Two criteria, one more conservative
and one more relaxed, are recommended in
connection with variance inflation factors.
More conservatively, it is recommended that
variance inflation factors be lower than 5; a
more relaxed criterion is that they be lower
than 10 (Hair et al., 1987; Kline, 1998). High
variance inflation factors usually occur for
pairs of predictor LVs, and suggest that the
LVs measure the same thing; which calls for
the removal of one of the LVs from the block,
or the model.

Correlations Among Indicators

The software allows users to view the corre-
lations among all indicators in table format.
Only the correlations for indicators included
in the model are shown through the menu
option “View correlations among indicators”,
available from the “View and save results”
window. This option is useful for users who
want to run a quick check on the correlations
among indicators while they are trying to
identify possible sources of multicolinearity.

Thetable of correlations among indicators
used in the model is usually much larger, with
many more columns and rows, than that of the
correlations among LVs. For this reason, the
P values for the correlations are not shown in
the screen view option, but are saved in the
related tab-delimited text file.

For correlations among all indicators,
including those indicators not included in the
model, use the menu option “Save general
descriptive statistics into a tab-delimited .txt
file”. This menu option is available from the
main software window, after Step 3 is com-
pleted (i.c., the data for the SEM analysis has
been pre-processed). This option is generally
more appropriate for users who want to include
the correlations among indicators in their re-
searchreports, as part of a descriptive statistics
table. This option also generates means and
standard deviations for each of the indicators.
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Figure 11. Linear and nonlinear (“warped”) relationships among latent variables window

[ WarpPLS 1.0 - Linear and nonlinear ("warped") relationships émg latent variables
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ECU
Effi*Proc
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Figure 12. Plot of a relationship between pair of latent variables
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Indicators that are not used in the model may
simply be deleted prior to the inclusion in a
research report.

Linear and Nonlinear
Relationships Among
Latent Variables

The software shows a table with the types of
relationships, warped or linear, between LVs
that are linked in the model (Figure 11). The
term “warped” is used for relationships that
are clearly nonlinear, and the term “linear” for
linear or quasi-linear relationships. Quasi-linear
relationships are slightly nonlinear relation-

ships, which look linear upon visual inspection
on plots of the regression curves that best ap-
proximate the relationships.

Plots with the points as well as the regres-
sion curves that best approximate the relation-
ships can be viewed by clicking on a cell
containing a relationship type description.
(These cells are the same as those that contain
path coefficients, in the path coefficients table.)
See Figure 12 for an example of one of these
plots. In this example, the relationship takes
the form of a distorted S-curve. The curve may
also be seen as a combination of two U-curves,
one of which (on the right) is inverted.
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As mentioned earlier, the Warp2 PLS Re-
gression algorithm tries to identify a U-curve
relationship between LVs, and, if that relation-
ship exists, the algorithm transforms (or
“warps”) the scores of the predictor LVs so as
to better reflect the U-curve relationship in the
estimated path coefficients in the model. The
Warp3 PLS Regression algorithm, the default
algorithm used by this software, tries to iden-
tify a relationship defined by a function whose
first derivative is a U-curve. This type of rela-
tionship follows a pattern that is more similar
toan S-curve (orasomewhatdistorted S-curve),
and can be seen as a combination of two con-
nected U-curves, one of which is inverted.

Sometimes a Warp3 PLS Regression will
lead to results that tell you that a relationship
between two LVs has the form of a U-curve
or a line, as opposed to an S-curve. Similarly,
sometimes a Warp2 PLS Regression’s results
will tell you that a relationship has the form ofa
line. This is because the underlying algorithms
find the type of relationship that best fits the
distribution of points associated with a pair of
LVs, and sometimes those types are not S-curves
or U-curves.

The plots of relationships between pairs
of LVs provide a much more nuanced view
of how each pair of LVs is related. However,
caution must be taken in the interpretation of
these plots, especially when the distribution of
data points is very uneven.

An extreme example would be a warped
plot in which all of the data points would be
concentrated on the right part of the plot, with
only one data point on the far left part of the
plot. That single data point, called an outlier,
would influence the shape of the nonlinear re-
lationship. In these cases, the researcher must
decide whether the outlier is “good” data that
should be allowed to shape the relationship,
or is simply “bad” data resulting from a data
collection error.

If the outlier is found to be “bad” data, it
can be removed from the data set by a simple
procedure. The user should save the standard-
ized data into a text file, using the menu option

“Save standardized pre-processed data into
a tab-delimited .txt file”. This menu option
is available from the main software window,
after Step 3 is completed (i.e., the data for the
SEM analysis has been pre-processed). Next
the user should open the file with spreadsheet
software (e.g., Excel). The outlier should be
easy to identify, on the dataset, and should be
eliminated. Then the user should re-read this
modified file as if it was the original data file,
and run the SEM analysis steps again. This pro-
cedure may lead to a visible change in the shape
of the nonlinear relationship, and significantly
affect the results.
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