
ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 1

Journal of Information Technology Management

ISSN #1042-1319

A Publication of the Association of Management

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITY

AND SATISFACTION

XIHUI ZHANG

UNIVERSITY OF NORTH ALABAMA
xzhang6@una.edu

JASBIR DHALIWAL

UNIVERSITY OF MEMPHIS
jdhaliwl@memphis.edu

MARK L. GILLENSON

UNIVERSITY OF MEMPHIS
mgillnsn@memphis.edu

ABSTRACT

The way testing is organized for software development has not been adequately addressed in both the practitioner

and academic research literature. In practice, a diverse set of methods is being used to organize testing. Some organizations

emphasize one-to-one matching between developers and testers while others do not. Additionally, some organizations have a

distinct testing unit for their testing professionals while others have them in the same unit as developers. Such practices are

also influenced by the development methodologies of the organization such as the lifecycle and agile approaches. This paper

attempts to shed light on whether these governance choices matter. It considers the influence of the development methods,

the existence of one-to-one matching between developers and testers, and the existence of a distinct corporate testing unit on

software quality and job satisfaction. The results of this study suggest that development methods do not significantly influ-

ence software quality or job satisfaction. However, one-to-one matching of developers and testers has a positive influence on

both software quality and job satisfaction. The existence of a dedicated organizational unit for software testing also has a

positive influence on the quality of software developed. These results suggest that organizations must emphasize one-to-one

matching and a distinct testing unit for improved software quality and job satisfaction.

Keywords: Software development, lifecycle models, agile methods, software testing, software quality, job satisfaction.

INTRODUCTION

In the last twenty years, there has been steady

interest in the use of adaptive, flexible methods for devel-

oping software. A key reason for this is the perception

that methodologies based on the traditional lifecycle

methods (e.g., waterfall models) are too slow, often char-

acterized by “paralysis of analysis,” and the over-

specialization promoted by having different groups un-

dertake separate sequential stages for each activity. In the

early days, the focus on adaptive, flexible methods took

the form of prototyping, or rapid and joint application

development (RAD/JAD). More recently, it has shifted to

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 2

the notion of agile methods [13] such as extreme pro-

gramming and scrum [4][18]. While most major software

development organizations that develop large, complex,

integrated, and often real-time systems generally subscribe

to established methodologies based on the lifecycle meth-

ods, there is an increasing tendency to also allow excep-

tions focused on experimentation with more agile meth-

odologies [6][19]. Other large information technology

(IT) organizations are also increasingly starting to struggle

with the question of how to organize and implement agile

methodologies on a large scale [11][18]. Clearly, the

trend toward agile methods is increasing.

The choice of software development methodol-

ogy has significant implications for software testing,

which is a significant component of software development

[12][14]. The fact that the software development lifecycle

identifies a distinct stage when code is to be tested has led

to the birth of a distinct profession called “software test-

ers.” This fact also prescribes defined “hand-offs” and

structured interactions between developers and testers

groups. For example, developers hand code to a testing

group for integration testing only after unit testing has

been performed by the developers themselves. The test-

ing group then communicates back to the developers with

specified defect reports and change requests. This envi-

ronment generally is not characterized by close one-to-one

individual interactions between developers and testers

who can build a stable working relationship over time.

Instead of one-to-one interactions, the focus is on struc-

tured exchanges between a “faceless” development group

in the overall organization and a different testing group.

Agile methods, it is argued, promote more one-to-one

matching that emphasizes personal interactions between

individual developers and testers who are generally ex-

pected to work together as part of a small team over

longer time periods, such as at Microsoft [24]. In such an

environment, developers and testers generally belong to

the same organizational unit.

From a software testing viewpoint, this research

tries to provide empirical clarification as to the influence

of using lifecycle versus agile methods for software de-

velopment. The focus is on answering the following two

questions, as suggested in Zhang et al. [35]: First, does the

use of one methodology over another lead to better quality

of software? Second, does the use of a particular method-

ology lead to better job satisfaction? Software quality and

job satisfaction are chosen because they are closely re-

lated to the context of software development and testing.

Software with poor quality leads to unhappy end users,

and low job satisfaction leads to employee turnover.

Therefore, these critical questions must be answered for

any IT organization to make critical decisions about how

to do development and testing. Given that the application

of the lifecycle methodology generally means that testers

report to a distinct organizational sub-unit within the

larger corporate IT unit, it is also important to understand

the influence of this governance choice.

Further, this study examines the influence of the

existence of one-to-one matching between developers and

testers, and the existence of a distinct corporate testing

unit on two dependent variables that represent impacts:

software quality and job satisfaction. The paper proceeds

as follows. First, we describe the research model that was

used to drive investigation of the research questions dis-

cussed above. Next, we provide detailed methodological

aspects about the empirical study that was undertaken to

collect data. Then, we describe measurement issues per-

taining to the constructs and data analysis as well as the

findings of the study. Finally, we conclude the paper with

a discussion of critical implications of the findings.

THEORETICAL DEVELOPMENT

Guided by theory and past research, a research

model in Figure 1 is proposed which asserts that the use of

development methods such as agile methods, the existence

of one-to-one matching between developers and testers,

and the existence of a distinct corporate testing unit will

have significant influence on both software quality and

job satisfaction. We provide theoretical support for the

hypothesized relationships in the following sections.

Agile versus Lifecycle Methods

In the early 1950’s, the software development

process had only two steps: an analysis step followed by a

coding step [28]. This analysis-coding model, however, is

practically ineffective and inefficient for the development

of large and complex programs [28]. Lifecycle models

were then developed, with the intent to bring control and

order into software development. Lifecycle methods are

plan-based approaches which divide the software devel-

opment process into clear-cut phases, typically including

phases such as analysis, design, coding, testing, and im-

plementation [21]. While bringing structure and order to

software development, lifecycle methods often have diffi-

culty in meeting the changing needs of end users.

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 3

Figure 1: Research Model

Agile software development is basically an itera-

tive approach that focuses on incremental specification,

design, and implementation [29], while requiring full inte-

gration of testing and development [31]. Because of its

adaptability, an agile method can easily adapt to different

project contexts [2]. In the agile environment, testing is a

frequent activity as small amounts of code are tested im-

mediately upon being written [9]. This is a feature called

“testing throughout the lifecycle” [2]. According to the

Manifesto for Agile Software Development

(http://agilemanifesto.org), agile methods value: (1) indi-

viduals and interactions over processes and tools, (2)

working software over comprehensive documentation, (3)

customer collaboration over contract negotiation, and (4)

responding to change over following a plan. The intent is

to produce high quality software in a cost effective and

timely manner, and in the meantime, meet the changing

needs of end users.

There are many agile software development

methods, and eXtreme Programming (XP), which is de-

pendent on highly skilled programmers [14], is the most

prominent one. After a short planning stage, XP goes

through analysis, design, and implementation stages

quickly [8]. A timebox, usually spanning one to four

weeks, is used to ensure that new, enhanced software is

ready to be delivered for each iteration. Agile methods

require developers and testers to interact more and often

[13]. Beck and Andres [4] note that XP encourages

communication, simplicity, feedback, courage, and re-

spect, which may improve both software quality and job

satisfaction. With quantitative and qualitative data, Talby

et al. [31] demonstrate that agile software development

dramatically improves development quality and produc-

tivity. Errors discovered late in the software development

process can be more readily handled in an agile develop-

ment environment than in a lifecycle environment through

the use of automated test suites [32]. According to Mar-

tens and Gat [20], “agile is a systemic change. It drives

cost down, quality up and service levels higher by making

the entire process leaner, the entire staff more responsible,

and the customer more involved” (p. 27). Thus, we hy-

pothesize:

H1a: The use of development methods such as

agile methods will positively influence the

quality of the software.

H1b: The use of development methods such as

agile methods will positively influence the level

of job satisfaction.

One-to-one Matching of Developers and

Testers

Many software development organizations such

as Microsoft [24] match developers and testers on a one-

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 4

to-one basis in teams when implementing agile methods.

Note that although not as often as in organizations using

agile methods, one-to-one matching between developers

and testers does exist in organizations using lifecycle

methods. For the same reasons mentioned above, this

one-to-one matching between developers and testers may

increase their job satisfaction and improve software qual-

ity. One-to-one matching of developers and testers facili-

tates good communication and free flow of information

between them. Both developers and testers can get help

and feedback quickly, improving their work effectiveness

and efficiency. This has the potential to improve the

quality of the software they collaborate on. Furthermore,

in a one-to-one matching environment, developers and

testers spend more time together, getting to know each

other better, which increases the likelihood of enjoying

their working with each other. Thus, we hypothesize:

H2a: The one-to-one matching of developers

and testers will positively influence the quality

of software.

H2b: The one-to-one matching of developers

and testers will positively influence their job

satisfaction.

A Distinct Organizational Unit for Testing

Largely because the software development life-

cycle identifies testing as a dedicated sequential stage

(after coding) towards the end of the lifecycle, organiza-

tions using lifecycle methods tend to have a distinct or-

ganizational unit comprising testers who are then assigned

to development projects rather than being matched to

identified developers. Note that although not as often as

in organizations using lifecycle methods, a distinct or-

ganizational unit for testers does exist in organizations

using agile methods. The use of agile methods necessi-

tates iterative “spirals” of interactions between individual

developers and testers who are working as an integrated

team. In most organizations that use this approach (e.g.,

Microsoft), there is no distinct organizational unit for

software testing and both the testers and developers report

to the same organizational unit. That is, organizations

using lifecycle development methods tend to use a distinct

organizational unit for software testing. Therefore, there

is theoretical value to investigating its influence given the

increasing concerns pertaining to the governance of agile

methodologies [31][30].

Having a distinct organizational unit for software

testing has several advantages for improving software

quality. First, testers in a distinct testing unit will focus on

testing but nothing else, and they will become experts in

what they are doing in the long run. Second, testers in a

distinct testing unit will feel less pressure to ship in spite

of quality issues than their counterparts who are more

integrated with development or operations. Third, a dis-

tinct testing unit, whose manager is organizationally equal

to the development manager, will provide “an objective

look at the software being tested” [5, p. 297]. Myers [22]

argues that “a programming organization should not test

its own programs” (p. 16) because “a programming or-

ganization … is largely measured on the ability to produce

a program by a given date for a certain cost” (p. 17). The

“meeting the schedule and the cost objectives” are consid-

erably different from the testing objective, which is to

deliver the end product with the best quality.

Unfortunately, having a distinct testing unit has

some disadvantages too. “The test group can become

squeezed between development and operations groups”

[15, p. 68], competing for time, personnel, and other

scarce project resources. Oftentimes, testers get frustrated

because they cannot begin testing early enough to get all

the necessary tests done before “the shipping day.” To

make things worse, testers often get the blame. When

communication fails and the flow of information becomes

choked, conflict will develop in the project team, espe-

cially between developers and testers [34]. All of these

may have the potential to negatively influence the job

satisfaction of software developers and testers. Thus, we

propose:

H3a: The existence of a distinct organizational

unit for software testing will positively influence

the quality of software.

H3b: The existence of a distinct organizational

unit for software testing will negatively influ-

ence job satisfaction.

RESEARCH METHODOLOGY

Measurement Items

The use of development methods such as agile

methods was measured by one item: Software code was

developed using agile methods as opposed to the systems

development lifecycle. The existence of one-to-one

matching between developers and testers was measured by

one item: Testers were largely assigned to support par-

ticular developers. The existence of a distinct corporate

testing unit was measured by one item: Software testing

represented an identifiable and distinct organizational

unit. Respondents were asked to score these three meas-

urement items on 7-point Likert-type scales anchored at

(1) = strongly agree, (4) = neutral, and (7) strongly dis-

agree.

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 5

Software quality was measured using a six-item

scale (see Table 1) adapted from scales developed and

validated by Barki and Hartwick [3], measuring six di-

mensions of the construct: functionality, reliability, us-

ability, efficiency, maintainability, and portability. This

adapted six-item scale is in accordance with ISO 9126

Standard “Software Product Evaluation – Quality Char-

acteristics and Guidelines” [7], as well as the software

quality measurement scales recommended by Issac et al.

[16] and Ortega et al. [23]. Respondents were asked to

score the measurement items on 7-point Likert-type scales

anchored at (1) = not at all, (4) = neutral, and (7) = defi-

nitely.

Job satisfaction was measured using a five-item

scale (see Table 1) adapted from scales developed and

validated by Wright and Cropanzano [33], measuring five

dimensions of the construct: degree of satisfaction with

the work itself, degree of satisfaction with co-workers,

degree of satisfaction with the way one is supervised, de-

gree of satisfaction with opportunities for promotion, and

degree of satisfaction with pay and benefits. Respondents

were asked to score the measurement items on 7-point

Likert-type scales anchored at (1) = strongly agree, (4) =

neutral, and (7) = strongly disagree.

Table 1: Measurement Items

Construct Measurement Item

Development Methods
Software code was developed using agile methods as opposed to the systems development lifecy-

cle.

One-to-one Matching Testers were largely assigned to support particular developers.

Distinct Testing Unit Software testing represented an identifiable and distinct organizational unit.

The software developed is reliable (it is always up and running, runs without errors, and does

what it is supposed to do).

It is easy to tell whether the software is functioning correctly.

The software can easily be modified to meet changing user requirements.

The software is easy to maintain.

The software is easy to use.

Software Quality

The software performs its functions quickly.

I am satisfied with the work that I do in my job.

I am satisfied with my co-workers.

I am satisfied with the way I am supervised.

I am satisfied with opportunities for promotion in my job.

Job Satisfaction

I am satisfied with my pay and benefits.

Data Collection

An online survey instrument including all the

aforementioned constructs and their associated measure-

ment items was developed, and the survey link was dis-

tributed to professional software developers and testers by

individual emails. We used “Request for Research Assis-

tance” for the subject line of the soliciting emails. In the

body of the email, we provided information about the pur-

pose of our study. We also assured the recipients that

their responses would be kept completely confidential and

that there would not be a way for us to link their responses

back to them or to their organizations. A second email,

serving as a reminder, was sent three weeks after the first

one.

We obtained a total of 1836 unique names and

their corresponding email addresses from three major

sources: a database provided by a software testing re-

search center, an online directory of software testers and

consultants, and SourceForge.net. All in all, 196 people

(10.68%) responded to the online survey. Among them,

46.4% identified themselves as developers, another 42.3%

identified themselves as testers, and the remaining 11.2%

identified themselves as other software development pro-

fessionals. Responses were removed from the final data

set if (1) they were not from developers or testers, or (2)

they contained over 60% missing values. As a result, a

total of 159 responses were included in our data analysis:

80 were from developers, and 79 were from testers.

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 6

Demographics of the Respondents

Demographics of the respondents assessed in-

cluded: gender, education, years of job related work expe-

rience, years with current software development and test-

ing organization, and gross annual income (see Table 2).

The ratio of male respondents (67.92%) to female respon-

dents (32.08%) was roughly 2:1. More than 80% of the

respondents had a bachelor's degree (43.40%) or a mas-

ter's degree (38.99%) as their highest degree. More than

half of them (54.09%) had over 10 years work experience

related to their current job, and more than half of them

(51.57%) had spent 1 to 5 years with their current soft-

ware development and testing organization. 79.25% of

the respondents had a gross annual income in the range of

$50,000 - $100,000.

Table 2: Demographics of the Respondents (N = 159)

Category Value Frequency Percentage

Male 108 67.92%
Gender

Female 51 32.08%

HS diploma 10 6.29%

Associate's degree 12 7.55%

Bachelor's degree 69 43.40%

Master's degree 62 38.99%

Education

Doctoral degree 6 3.77%

Less than 1 year 2 1.26%

1 to 3 years 15 9.43%

3 to 5 years 11 6.92%

5 to 7 years 18 11.32%

7 to 10 years 27 16.98%

Years of job related work experience

Over 10 years 86 54.09%

Less than 1 year 8 5.03%

1 to 3 years 39 24.53%

3 to 5 years 43 27.04%

5 to 7 years 21 13.21%

7 to 10 years 22 13.84%

Years with current software development and

testing organization

Over 10 years 26 16.35%

Under $25,000 9 5.66%

$25,000 to $50,000 10 6.29%

$50,000 to $75,000 57 35.85%

$75,000 to $100,000 69 43.40%

$100,000 to $125,000 11 6.92%

Gross annual income

Over $125,000 3 1.88%

DATA ANALYSIS AND RESULTS

Before analyzing the data, we transformed all the

reverse-worded data items for the construct of job satis-

faction. Specifically, we created a new item for each

original data item of the construct, assigning a value to it

by using the formula (8 – the original value of the data

item). As such, a higher value of the newly created data

item will represent a higher level of job satisfaction.

Data analysis was conducted using the partial

least square (PLS) estimation technique [10] as applied in

the software package WarpPLS 1.0. The primary goal

was to determine whether each of the following three

factors influences software quality and job satisfaction:

the use of development methods such as agile methods,

the existence of one-to-one matching between developers

and testers, and the existence of a distinct corporate test-

ing unit.

Measurement Model Assessment

Collinearity Diagnostics. The existence of multi-

collinearity among measurement items is a threat to con-

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 7

struct reliability. Data analysis results indicated that the

maximum value of the variance inflation factor (VIF) was

1.076, which is below the recommended cut-off value of

3.3 for identifying suspect items that can cause multi-

collinearity issues [26]. Therefore, we concluded that

there was no threat of multicollinearity within the items.

Convergent and Discriminant Validity. All but

four of the individual item loadings for the software qual-

ity and job satisfaction constructs were above 0.70. The

composite reliability coefficients were 0.880 for software

quality and 0.818 for job satisfaction (see Table 3). The

Cronbach alpha coefficients were 0.835 for software

quality and 0.721 for job satisfaction (see Table 3). Thus,

no items were dropped because both the aforementioned

coefficients were greater than the suggested value of 0.7.

Also in Table 3, the diagonal elements (shaded) are the

square root of the average variances extracted (AVE’s),

i.e., the variance shared between the constructs and their

measures. The off-diagonal elements are the correlations

among constructs. For discriminant validity, diagonal

elements should be larger than off-diagonal elements.

Table 3 confirms that all constructs were more strongly

correlated with their own measures than they were with

any of the other constructs; thus, discriminant validity was

observed.

Table 3: Reliability and Discriminant Validity Coefficients

Construct CRC CAC DM OM DTU SQ JS

DM 1.000 1.000 1.000

OM 1.000 1.000 0.068 1.000

DTU 1.000 1.000 -0.200 0.136 1.000

SQ 0.880 0.836 -0.062 -0.164 -0.191 0.742

JS 0.818 0.721 0.023 -0.202 -0.063 0.416 0.689

Notes: CRC = Composite Reliability Coefficient;

CAC = Crobach Alpha Coefficient; DM = Development Methods;

 OM = One-to-one Matching; DTU = Distinct Testing Unit;

 SQ = Software Quality; JS = Job Satisfaction.

Analysis of Common Method Bias. To assess

common method bias in our survey data, we performed a

Harman's single-factor test, following the procedure out-

lined by Podsakoff and Organ [27]. In this test, all of the

items of the principal constructs in the research model

were entered into a principal components factor analysis

(PCA) using SPSS v. 17. A substantial amount of com-

mon method bias exists "when a single factor emerges

from the analysis or when one general factor accounts for

the majority of the covariance in the independent and de-

pendent variables" [25, p. 388]. The PCA results showed

that there existed five factors with eigen values greater

than 1 in the data and no single factor emerged as a domi-

nant factor accounting for most of the variance (the factor

with the greatest eigen value accounts for 30.251% of the

variance), indicating no substantial common method bias

in our survey data.

Analysis of Nonresponse Bias. Nonresponse bias

was assessed by comparing early and late respondents, as

recommended by Armstrong and Overton [1]. Since the

second email, serving as a reminder, was sent three weeks

after the first one, respondents of the first three weeks

were classified as early respondents, while those re-

sponding later than the first three weeks were classified as

late respondents. A t-test of all the demographic and re-

search variables showed that there were no statistically

significant differences between early respondents and late

ones, indicating nonresponse bias was not a major con-

cern.

Structural Model Assessment

The structural model was assessed based on the

significance of the path coefficients and the associated p

values between the constructs and the values of R2 ob-

tained for the dependent variables. Path coefficients and

associated p-values (obtained by running WarpPLS 1.0

with a bootstrapping procedure with 100 iterations) are

presented in Table 4. All but one of the six links are

negative, and three of them are significant. Together, the

use of development methods such as agile methods, the

existence of one-to-one matching, and the existence of a

distinct testing unit explained 7.0% of the variance in

software quality and 6.0% of the variance in job satisfac-

tion.

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 8

Table 4: Effects of Development Methods, One-to-one Matching, and Distinct Testing Unit on Software

Quality and Job Satisfaction

Hypothesis Tests and Results

The hypotheses were assessed by examining path

coefficients and the associated p-values as well as their

significance levels. The hypothesis test results are illus-

trated in Figure 2 and also summarized in Table 5. H2a,

H2b, and H3a were supported at p < 0.05, and the re-

maining hypotheses (H1a, H1b, and H3b) were not sup-

ported.

Specifically, neither Hypothesis H1a nor H1b

was supported. The use of development methods such as

agile methods did not improve the quality of software

developed or the level of job satisfaction of developers

and testers. Both Hypotheses H2a and H2b were sup-

ported. The existence of one-to-one matching between

developers and testers was shown to exert a significant

positive influence on both software quality and job satis-

faction. Hypothesis H3a was supported, but Hypothesis

H3b was not supported. The existence of a distinct or-

ganizational unit for testing was shown to exert a signifi-

cant positive influence on software quality, but no signifi-

cant influence on job satisfaction.

Figure 2: Structural Model Assessment Results

SQ JS SQ R2 JS R2

IV
β p β p

DM -0.085 0.195 0.068 0.383

OM -0.161* 0.026 -0.213** 0.001

DTU -0.152* 0.011 -0.074 0.229

0.07 0.06

Note: *p < 0.05. **p < 0.01. ***p < 0.001.

 β = Path Coefficient;

 IV = Independent Variable; DM = Development Methods;

 OM = One-to-one Matching; DTU = Distinct Testing Unit;

 SQ = Software Quality; JS = Job Satisfaction.

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 9

Table 5: Summary of Hypothesis Tests

Hypothesis
Path Coeffi-

cient

P-

Value

Support for Hy-

pothesis

H1a: The use of development methods such as agile methods will positively

influence the quality of the software.

-0.085 0.195 Not Supported

H1b: The use of development methods such as agile methods will positively

influence the level of job satisfaction.

0.068 0.383 Not Supported

H2a: The one-to-one matching of developers and testers will positively influ-

ence the quality of software.

-0.161* 0.026 Supported

H2b: The one-to-one matching of developers and testers will positively influ-

ence their job satisfaction.

-0.213** 0.001 Supported

H3a: The existence of a distinct organizational unit for software testing will

positively influence the quality of software.

-0.152* 0.011 Supported

H3b: The existence of a distinct organizational unit for software testing will

negatively influence job satisfaction.

-0.074 0.229 Not Supported

Note: *p < 0.05. **p < 0.01. ***p < 0.001.

DISCUSSION

Implications of Findings

Our findings suggest that development methods

do not influence the development variables studied in this

research. Specifically, our findings suggest that the use of

development methods such as agile methods for software

development provide no advantages over established tra-

ditional lifecycle methods with regard to our dependent

variables. The quality of software developed does not get

better nor does the level of job satisfaction of developers

and testers increase. Typically, more unstructured and

iterative interactions between developers and testers take

place in agile environments. From a technology manage-

ment perspective, the increased levels of interaction could

imply that more managerial time and attention will be

needed in agile environments. However, in our case, the

increased managerial time and attention are not manifest-

ing into higher quality of code being produced or more

satisfied developers and testers. In other words, environ-

ments in which lifecycle methods are used are just as good

but may require fewer managerial efforts. Readers may

want to consider this result in the context of other research

that focuses on particular agile methods such as test-

driven development [17].

Another key result of our empirical analysis is

that the one-to-one matching of developers and testers

does provide significant advantages. Not only does the

quality of software produced get better but those involved

also perceive greater job satisfaction working together.

Given that we did not find any positive impacts on soft-

ware quality and job satisfaction arising from the use of

agile methodologies (see above), these findings showing

positive influence from one-to-one matching could be

interpreted as suggesting that the current manner in which

agile methodologies are being implemented may not be

working. While more research into the underlying reasons

for this conclusion is warranted (as this study did not de-

construct “agile methods” using a more refined break-

down), the key lesson for practitioners and theorists is that

there is value to designing software development and

testing methods that promote one-to-one matching be-

tween developers and testers. In our view, this finding

applies to the case of both agile, lifecycle, and other soft-

ware development methodologies. Irrespective of the

methodology used for software development, there is

value to ensuring that testers know particular developers

with whom they are working.

A final finding is that there is significant im-

provement in the quality of software developed resulting

from the existence of a distinct unit for software testing

within the software development organization. Our read-

ing of the software development industry suggests that

when agile development methodologies are used, there is

seldom a distinct software testing unit in place. The spe-

cialization that is generally fostered by lifecycle develop-

ment methodologies, however, does often result in the

setting up of distinct software testing organizational units.

Our study shows that this is prudent from the perspective

of improving the quality of software produced.

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 10

Limitations and Suggestions for Future Re-

search

This study has several limitations. First, all the

three independent variables were measured by single

items. This can be troublesome in survey research such as

ours. Future research is encouraged to develop and vali-

date multi-item scales for these constructs. For example,

further refinement of the one-to-one matching construct

between developers and testers is a viable area for new

and follow-up studies. Second, software quality was

measured by a survey of software developers and testers.

It is understandable that there may be a difference be-

tween software quality perceived by developers and test-

ers and that perceived by end users. Future research can

focus on end users to measure the perceptions of software

quality. Third, as mentioned before, this study did not

deconstruct “agile methods” using a more refined break-

down. Future research needs to compare and contrast the

influence of different agile methods (e.g., XP vs. Scrum).

Furthermore, contrary to the majority of the literature, this

study did not find that the use of agile methods provided

any advantages over lifecycle methods in terms of soft-

ware quality and job satisfaction. One possible explana-

tion of this might be that agile methods are in the intro-

duction stage and many developers and testers might lack

training in agile methods. Future research needs to iden-

tify how well the participants know agile methods and

how often they use it on the job. Future research may also

want to focus on whether the positive benefits of one-to-

one matching between developers and testers extends to

methodologies used in situations where either the devel-

oper or tester works for an outsourcing partner.

CONCLUSIONS

This paper attempts to assess the influence of de-

velopment methods, the existence of one-to-one matching

between developers and testers, and the existence of a

distinct corporate testing unit on software quality and job

satisfaction. Our results suggest that development meth-

ods do not influence software quality or job satisfaction.

The existence of one-to-one matching of developers and

testers has a positive influence on both software quality

and job satisfaction. The existence of a dedicated organ-

izational unit for software testing also has a positive influ-

ence on the quality of software developed, but exerts no

influence on job satisfaction.

Currently, lifecycle models are still widely used

in large software development organizations; agile meth-

ods, however, are on the rise. Lifecycle models and agile

methods are not mutually exclusive [29]. In practice, or-

ganizations often use a hybrid methodology, especially for

the development of large, complex, integrated, and real-

time systems. The results of this research deliver a clear

message to software development organizations shifting

their gears from lifecycle models to agile methods: devel-

opment methodology does not matter, but the way you

organize testers does.

REFERENCES

[1] Armstrong, J. S. and Overton, T. S. "Estimating

nonresponse bias in mail surveys," Journal of Mar-

keting Research (14:3), 1977, pp. 396-402.

[2] Aydin, M. N., Harmsen, F., van Slooten, K., and

Stagwee, R. A. "On the adaptation of an agile in-

formation systems development method," Journal

of Database Management (16:4), 2005, pp. 24-40.

[3] Barki, H. and Hartwick, J. "Interpersonal conflict

and its management in information system devel-

opment," MIS Quarterly (25:2), 2001, pp. 195-228.

[4] Beck, K. and Andres, C. Extreme programming

explained: Embrace change (2
nd

 ed.), Addison-

Wesley, Boston, Massachusetts, 2005.

[5] Craig, R. D. and Jaskiel, S. P. Systematic software

testing, Artech House Publishers, Norwood, Massa-

chusetts, 2002.

[6] Crispin, L. and Gregory, J. Agile testing: A practi-

cal guide for testers and agile teams, Addison-

Wesley, Boston, Massachusetts, 2009.

[7] Copeland, L. A practitioner’s guide to software

testing design, Artech House Publishers, Norwood,

Massachusetts, 2004.

[8] Dennis, A., Wixom, B. H., and Roth, R. M. Systems

analysis and design (3
rd

 ed.), John Wiley & Sons,

New York, New York, 2005.

[9] Erickson, J., Lyytinen K., and Siau, K. "Agile mod-

eling, agile software development, and extreme

programming: The state of research," Journal of

Database Management (16:4), 2005, pp. 88-100.

[10] Gefen, D., Straub, D. W., and Boudreau, M.

"Structural equation modeling techniques and re-

gression: Guidelines for research practice," Com-

munications of the Association for Information

Systems (4:7), 2000, pp. 1-78.

[11] Grewal, H. and Maurer, F. "Scaling agile method-

ologies for developing a production accounting

system for the oil & gas industry," Proceedings of

AGILE 2007, Washington, D.C.: August 13-17,

2007, pp. 309-315.

[12] Henderson-Sellers, B. and Serour, M. K. "Creating

a dual-agility method: The value of method engi-

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 11

neering," Journal of Database Management (16:4),

2005, pp. 1-23.

[13] Highsmith, J. and Cockburn, A. "Agile software

development: The business of innovation," IEEE

Computer (34:9), 2001, pp. 120-122.

[14] Hilkka, M.-R., Tuure, T., and Matti, R. "Is extreme

programming just old wine in new bottles: A com-

parison of two cases," Journal of Database Man-

agement (16:4), 2005, pp. 41-61.

[15] Hutcheson, M. L. Software testing fundamentals:

Methods and metrics, Wiley Publishing Inc., Indi-

anapolis, Indiana, 2003.

[16] Issac, G., Rajendran, C., and Anantharaman, R. N.

"Determinants of software quality: Customer’s per-

spective," TQM & Business Excellence (14:9),

2003, pp.1053-1070.

[17] Janzen, D. and Saiedian, H. "Does test-driven de-

velopment really improve software design quality?"

IEEE Software (25:2), 2008, pp. 77-84.

[18] Larman, C. and Vodde, B. Scaling lean & agile

development: Thinking and organizational tools for

large-scale scrum, Addison-Wesley, Boston, Mas-

sachusetts, 2008.

[19] Lee, E. C. "Forming to performing: Transitioning

large-scale project into agile," Proceedings of

AGILE 2008, Toronto, Ontario, Canada: August 4-

8, 2008, pp. 106-111.

[20] Martens, R. and Gat, I. "Wrestling with scaling

software agility," Software Development Times

(236: December 15), 2009, p. 27.

[21] McKeen, J. D. "Successful development strategies

for business application systems," MIS Quarterly

(7:3), 1983, pp. 47-56.

[22] Myers, G. J. The art of software testing (2
nd

 ed.),

revised and updated by Badgett, T., Thomas, T. M,

and Sandler, C., John Wiley & Sons, Hoboken,

New Jersey, 2004.

[23] Ortega, M., Pérez, M., and Rojas, T. "Construction

of a systemic quality model for evaluating a soft-

ware product," Software Quality Journal (11:3),

2003, pp. 219-242.

[24] Page, A., Johnston, K., and Rollison, B. J. How we

test software at Microsoft, Microsoft Press,

Redmond, Washington, 2008.

[25] Pavlou, P. A. and Gefen, D. "Psychological contract

violation in online marketplaces: Antecedents, con-

sequences, and moderating role," Information Sys-

tems Research (16:4), 2005, pp. 372-399.

[26] Petter, S., Straub, D., and Rai, A. "Specifying for-

mative constructs in information systems research,"

MIS Quarterly (31:4), 2007, pp. 623-656.

[27] Podsakoff, P. M. and Organ, D. W. "Self-reports in

organizational research: Problems and Prospects,"

Journal of Management (12:4), 1986, pp. 531-544.

[28] Royce, W. W. "Managing the development of large

software systems," Proceedings of IEEE WESCON

1970, Los Angeles, California: August 25-28, 1970,

pp. 1-9.

[29] Sommerville, I. Software engineering (8
th

 ed.),

Addison-Wesley, Boston, Massachusetts, 2007.

[30] Talby, D. and Dubinsky, Y. "Governance of an ag-

ile software project," Proceedings of the 2009 ICSE

Workshop on Software Development Governance,

Vancouver, British Columbia, Canada: May 16-24,

2009, pp. 40-45.

[31] Talby, D., Keren, A., Hazzan, O., and Dubinsky, Y.

"Agile software testing in a large-scale project,"

IEEE Software (23:4), 2006, pp. 30-37.

[32] Turk, D., France, R., and Rumpe, B. "Assumptions

underlying agile software-development processes,"

Journal of Database Management (16:4), 2005, pp.

62-87.

[33] Wright, T.A. and Cropanzano, R. "Emotional ex-

haustion as a predictor of job performance and vol-

untary turnover," Journal of Applied Psychology

(83:3), 1998, pp. 486-493.

[34] Zhang, X., Dhaliwal, J.S., Gillenson, M.L., and

Moeller, G. “Sources of conflict between develop-

ers and testers in software development,” Proceed-

ings of 14th Americas Conference on Information

Systems, Toronto, Ontario, Canada: August 14-17,

2008, pp. 1-12.

[35] Zhang, X., Hu, T., Dai, H., and Li, X. “Software

development methodologies, trends and implica-

tions: A testing centric view,” Information Tech-

nology Journal (9:8), 2010, pp. 1747-1753.

AUTHOR BIOGRAPHIES

Xihui Zhang is an Assistant Professor of Com-

puter Information Systems in the College of Business at

the University of North Alabama. He earned a Ph.D. in

Business Administration with a concentration on Man-

agement Information Systems from the University of

Memphis. His teaching and research interests include

technical, behavioral, and managerial aspects of Informa-

tion Systems. He has published numerous articles

in refereed journals and conference proceedings. He

serves on the Editorial Review Board for several aca-

demic IS journals such as Journal of Computer Informa-

tion Systems and Journal of Information Technology Edu-

cation. Additional information about him can be found at

http://sites.google.com/site/xihuizhang/.

ORGANIZING SOFTWARE TESTING FOR IMPROVED QUALITYAND SATISFACTION

Journal of Information Technology Management Volume XXI, Number 4, 2010 12

Jasbir Dhaliwal is Professor of Information

Systems and Associate Dean for Research and Academic

Programs of the Fogelman College of Business and Eco-

nomics at the University of Memphis. He also directs the

Systems Testing Excellence Program at the FedEx Insti-

tute of Technology whose mandate is to advance the sci-

ence of testing and to provide a stronger theoretical basis

for industry best practices. He has a Ph.D. from the Uni-

versity of British Columbia, Canada and has published

over fifty research papers in journals such as Information

Systems Research, Information & Management, IEEE

Transactions on Engineering Management, International

Journal of Production Economics, European Journal of

Information Systems, and in numerous conference pro-

ceedings.

Mark L. Gillenson is Professor of Management

Information Systems in the Fogelman College of Business

and Economics of the University of Memphis. He re-

ceived his B.S. degree from Rensselaer Polytechnic Insti-

tute and his M.S. and Ph.D. degrees in Computer and In-

formation Science from the Ohio State University. Dr.

Gillenson worked for the IBM Corp. for 15 years and has

consulted for major corporations and government organi-

zations. Dr. Gillenson’s research has appeared in MIS

Quarterly, Communications of the ACM, Information &

Management, and other leading journals. His latest book

is Fundamentals of Database Management Systems,

2005, John Wiley & Sons.

